

Studies of NSTX L and H-mode Plasmas with Global Gyrokinetic Simulation

Y. Ren¹

W. Wang¹, W. Guttenfelder¹, S.M. Kaye¹, J. Ruiz-Ruiz², S. Ethier¹, R.E. Bell¹, B.P. LeBlanc¹, E. Mazzucato¹, D.R. Smith³, C.W. Domier⁴, H. Yuh⁵ and the NSTX-U Team *1. PPPL* 2. MIT 3. *UW-Madison* 4. *UC-Davis 5. Nova Photonics*

57th Annual Meeting of the APS Division of Plasma Physics Savannah, Georgia, November 16-20, 2014

Why are Global Effects Important?

- Global effects are considered to be important for STs
 - Local assumption of flux tube simulations based on ρ^* ->0
 - Large ρ^* of STs due to weaker toroidal field compared to conventional tokamaks ($\rho^* \sim 0.01$ for NSTX)
 - Global effects, e.g. profile variation, requiring global GK codes
- Study of global effects are important for achieving predictive capability for future STs
 - Need to validate first principle model for developing reduced transport model with global effects
- Serious validation efforts, applying global GK codes to ST plasmas, are still lacking

Outline

- GYROKINETIC TOKAMAK SIMULATION (GTS) code
- Global GTS simulations of NSTX L and H-mode plasmas
 - -NSTX RF-heated L-mode plasmas
 - Fast response of electron-scale turbulence to RF cessation
 - NSTX H-mode plasmas
 - Density gradient stabilization of electron-scale turbulence

GTS - a Global Gyrokinetic Code with Robust Capability to Simulate Turbulence & Transport for Tokamak Experiments

• δf PIC code solving modern GK equation in conservative form

$$\frac{\partial f_a}{\partial t} + \frac{1}{B^*} \nabla_Z \cdot (\dot{\vec{Z}} B^* f_a) = \sum_b C[f_a, f_b]$$

- New, improved weight scheme ensuring phase space incompressibility
- Full geometry, global simulation (without local ballooning approximation)
 - Real space field solvers with field-line-following mesh
 - Retains all toroidal modes allowed by resolution and full channels of nonlinear energy couplings
 - Enable to treat modes with low-n, with finite k_{\parallel} , (e.g., shear flow mode)
- Fully kinetic electrons (both trapped and untrapped electron dynamics)
- Linearized Fokker-Plank operator with particle, momentum and energy conservation for i-i and e-e collisions; Lorentz operator for e-i collisions
- Include neoclassical physics self-consistently in turbulence simulations

 Significant impact on some important transport & confinement issues (bootstrap)
 - current, poloidal flow, GAMs and particle transport, etc.)
- Applied to wide experiments for various physics studies: NSTX/U, DIII-D, C-MOD, KSTAR and ASDEX-U

NSTX RF-heated L-mode plasmas with fast response of electron-scale turbulence to RF cessation

High-k Microwave Scattering System is Used to Measure High-k Turbulence

- 280 GHz microwave is launched as the probe beam.
- Coherent scattering by plasma density fluctuations occurs when the three-wave coupling condition is satisfied:

$$K_s = K_p + k_i$$

- Bragg condition determines κ_p : $k_p = 2k_i sin(\theta_s/2)$
- The scattered light has a frequency of:

 $\omega_s = \omega_p + \omega_i$

with ω_s and $\omega_i >> \omega_p$

- The scattering system characteristics are:
 - Frequency bandwidth: 5 MHz
 - Heterodyne receiver: Wave propagation direction resolved
 - Measurement: k_r spectrum
 - Wavenumber resolution: 0.7 cm⁻¹ (2/a with a \approx 3 cm)
 - Wavenumber range (k_r): 5-30 cm⁻¹ (~5-30 ρ_J^{1}
 - Radial resolution: ±2 cm
 - Tangential resolution: 5-15 cm
 - Radial range: R=106 144 cm
 - Minimal detectable density fluctuation: $|\delta n_e(k)/n_e|^2 \approx 2 \times 10^{-11}$

6

Measured Turbulence Frequency Spectral Power Shows a Significant Drop Following the RF Cessation

Turbulence Wavenumber Spectral Power is Correlated with Electron Thermal Diffusivity

- About a factor of 2 decrease in electron thermal diffusivity after the RF cessation
 - Correlated with the decrease in turbulence wavenumber spectral power

From TRANSP

What Causes the Sudden Drop of Electron-scale Turbulence?

- <15% variation in equilibrium quantities in the high-k measurement region before and right after the RF cessation (over 17 ms)
- Equilibrium quantities
 not expected to
 change significantly
 on the time scale on
 which the turbulence
 changes (0.5-1 ms)
 - Energy confinement time~ 10 ms

Changes in Linear Growth Rate Cannot Explain the Observed Significant Drop in High-k Turbulence

• Ion scale modes are ITG/TEM hybrid

- Growth rate similar between t=465 and 482 ms

• ETG mode maximum growth rates show small increase from t=465 to 482 ms

- Inconsistent with the drop in the measure high-k spectral power

ITG/TEM and ETG Modes are Robustly Unstable

- T_e and T_i gradients are scanned with β ' fixed
- The ion-scale modes are driven by both electron and ion temperature gradients

$$- a/L_{Te,exp}=3.6$$

- $a/L_{Ti,exp} = 2.83$
- ETG modes critical a/L_{Te} is determined to be 2.1 (a/L_{Te,exp}=3.6) from T_e gradient scan

Are Global Effects Able to Explain the Observation?

- Global effects, e.g. profile variation, may be important
 - -Turbulence can spread from one region to another
- GTS simulations are carried out with experimental equilibria
 - -Linear local GS2 simulations help determine the radial domain for GTS simulations
 - -Focus on ion-scale turbulence

Robust Ion-scale Turbulence is Seen

- Strong ion-scale turbulence generated
 - -ExB shear is weak without strong NBI
- Turbulence propagates in the electron diamagnetic direction

Similar Turbulence Intensity is Found before and after the RF Cessation

Simulation was Well Resolved Spectrally

Similar Energy Fluxes from GTS are Seen before and after the RF cessation

- Electron energy flux matches experimental value after the RF cessation but not before
 - Experimental values from TRANSP+TORIC analysis
- Ion energy flux is over-predicted Electron energy flux

Ion energy flux 0.4 0.4 Q_{e,exp} at t=465 ms Q_{i.GTS} at t=482 ms 0.3 0.3 Q_{e.GTS} at t=482 ms Q_e (MW) Q_i (MW) Q_{e.exp} at t=482 ms Q_{i,GTS} at t=465 ms 0.2 0.2 Q_{i,exp} at t=465 ms 0.1 0.1 Q_{i.exp} at t=482 ms at t=465 ms 0 120 125 130 135 140 145 125 130 135 140 145 120 R (cm) R (cm)

NSTX-U 57th APS-DPP, Studies of NSTX L and H-mode Plasmas with Global Gyrokinetic Simulation, Y. Ren, November 17th, 2015

Energy Fluxes from Local Nonlinear Ion-scale GYRO Simulations are Significantly Higher

- Local nonlinear ion-scale GYRO simulations were carried out for R=135 cm
 - T_e and T_i gradients varied by $\pm 25\%$ to assess profile stiffness

Electron Energy Fluxes from Local Nonlinear ETG GYRO Simulations are Smaller than Experiment

- Electron energy fluxes from ETG turbulence have large variation vs radial location
 - Energy flux from 0.02 MW to 0.04 MW with a 25% increase in $T_{\rm e}\,gradient$

Electron energy flux

Gradient-driven Gyrokinetic Models have Difficulty Explaining Experimental Observations

- Observed turbulence variation time scale is 0.5 -1 ms, much smaller than confinement time ~ 10 ms
 - Equilibrium profiles are not expected to vary significantly on
 0.5 1 ms time scale
 - <15% variation in equilibrium quantities in the high-k measurement region are found before and right after the RF cessation (over 17 ms)
- Local and global gyrokinetic simulations are unable to explain observed change in turbulence and electron thermal transport before and after the RF cessation
- Nonlocal flux-driven mechanism may be important

NSTX H-mode plasmas with density gradient stabilization of electron-scale turbulence

Current Ramp-down in NSTX H-mode Plasma Leads to Core Density Gradient Increase

NSTX-U 57th APS-DPP, Studies of NSTX L and H-mode Plasmas with Global Gyrokinetic Simulation, Y. Ren, November 17th, 2015

Current Ramp-down in NSTX H-mode Plasma Leads to Core Density Gradient Increase

- ETG turbulence suppressed by large density gradient
 - See Ruiz-Ruiz's poster, GP12-61

- Is ion-scale turbulence driving thermal transport?
 - Here, we focus on ionscale GTS simulations and thermal transport

GTS Simulation Domains are Chosen to Have Significant Gradients

 Both electron and density gradients are significantly larger at t=565 ms than at t=332 ms

Robust Ion-scale Turbulence is Seen at t=332 ms

- Strong ion-scale turbulence generated

 ExB shear is turned on from the beginning of the simulation
- Turbulence propagates in the ion diamagnetic direction, due to toroidal rotation

Simulation Quantities are Averaged Over a Quasisteady Period

Ion Energy Flux from GTS is in Agreement with Experiment at t=332 ms

- Ion energy flux from ionscale turbulence contributes significantly at R>135 cm
- Neoclassical ion thermal transport is important further in the core of the plasma
 - Neoclassical ion thermal transport from NCLASS

Electron Thermal Transport is Significantly Underpredicted by GTS at t=332 ms

- Electron energy flux from GTS is only significant at R>135 cm
 - Much smaller than experimental electron thermal transport
- Contribution from ETG and electromagnetic effects may be important

Complete Suppression of Ion-scale Turbulence is Observed in GTS Simulation at t=565 ms

- Turbulence is suppressed after ExB shear is turned at t~600
- No Turbulence growth if ExB shear is turned on at the beginning of the simulation

Ion Energy Flux from GTS is Still in Agreement with Experiment at t=565 ms

- Neoclassical ion thermal transport is comparable to experimental ion thermal transport level
 - Neoclassical ion thermal transport from NCLASS
- ETG is significantly suppressed by density gradient (See poster GP12-61)
 - Electromagnetic effects
 may be important

Conclusion

- We have started to make serious efforts to validate global gyrokinetic simulations with NSTX experiments
- Global gyrokinetic simulations with GTS have helped identify the possible importance of nonlocal flux-driven mechanics in electron thermal transport in NSTX RFheated L-mode plasmas
- Global ion-scale gyrokinetic simulations with GTS for a NSTX NBI-heated H-mode plasma showed nice agreement with experiment in ion thermal transport but not in electron thermal transport