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Motivation

Energetic particle (EP)-driven instabilities can induce significant
alpha particle redistribution and losses to the first wall of fusion
reactors;

Energetic particle can interact with thermal plasma strongly: affect
equilibrium, stability and transport. EP physics is a key element for
understanding and controlling burning plasmas.

Fishbone is one of the most important energetic particle driven
mode in tokamak plasmas, which has global mode structure, and
can limit plasma performance.

M3D-K simulations of beam-driven modes in NSTX are carried out
for code validation and physics understanding.



Beam-driven fishbones are routinely observed in NSTX
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Fishbone and NRK (LLM) were observed in STs and tokamaks
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M3D-K is a global nonlinear kinetic/MHD hybrid
simulation code for toroidal plasmas

G.Y. Fu, J. Breslau, L. Sugiyama, H. Strauss, W. Park, F. Wang et al.
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The energetic particle stress tensor, P,, is calculated using drift kinetic or gyro-
kinetic equation via PIC.

Mode structures are evolved self-consistently including non-perturbative effects of
energetic particles.

* Include plasma rotation.

G.Y. Fu et al, PHYSICS OF PLASMAS 13, 052517 (2006)
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Previous work:
Linear stability and nonlinear dynamics of the fishbone mode in

spherical tokamaks
F. Wang, G.Y. Fu, J. Breslau, J.Y. Liu, Phys. Plasmas 2013

* We consider NSTX plasmas with a weakly reversed q profile and g, close
but above unity. For such g profile, fishbone and non-resonant kink mode
(NRK) have been observed in NSTX and MAST.

 M3D-K simulation results show that both NRK and fishbone can be
unstable in such profile. A fishbone instability preferentially excited at
higher q,,,;, Which consistent with the observed appearance of the
fishbone before the “long-loved mode” in MAST and NSTX experiments.

* Nonlinear simulations show that an m/n=2/1 magnetic island is found to

be driven by the fishbone instability, which could provide a trigger for the
NTM.



New results in this work

e Effects of toroidal rotation on linear stability.

* Particles nonlinear phase space dynamics, frequency chirping.
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Equilibrium profile and parameters

Fishbone linear stability with toroidal rotation

NSTX #124379 at t=0.635s

B,=0.44T, R=0.86m, a=0.60m

n.(0)=9.3 x 1013 cm?3
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Analytic fast ion distribution with
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Rotation effect is destabilizing for fishbone at higher q,.. . .

By = 0.395 with rotation
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Rotation effect is destabilizing for fishbone at lower q,,,,, .
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The mode structure is different at low g, and high q,,., At high g, the m/n=2/1
component becomes more important, and the mode has strong ballooning feature

B = 0.395 without rotation By = 0.395 with rotation

2 e NRK o o o o o ‘ 2 e NRK o o o ° o o
o stable © o stable P
e fishbone N e fishbone °c e o+ e
1.8¢ o o 1 1.8 o e e o
o N - °
16, ° % L6, SRR
§ o o e § o o e .o o X
L4, C e s T L
o [ ] [ ] [ ] [ ] [ ] () [ ] [ ] [ ] [ ] [ ] “
1 2_2\ ) ° ° : : ° | 122 o ° ° ° ° o | ‘ll
: \\\\\\\\\ ) 77: 77777 : - 7:7777?:‘777! : \\\\\\\\ o | e 6 o he o 'l
_ _ -
1 : I e e $\ o0 1 : \;7"7;"7;}<KN0 e o© :
0 0.1 0.2 03 / 04 0 0.1 0.2 ¢ 0.3 0.4 ¢
Bl o] |
s~ ’l }
i ¢ I
II .7 1
time=300.50, U $ time=300.50, U === time=300.50, U
2,
1,
N 0

05 1 15 2 25
R
Fishbone linear stability with toroidal rotation

12



Passing and trapped linear resonant particles in
phase space

The main resonance for passing

particles is:
OF) _ _ —
15! - passing particle W We Wp = 0
o trapped particle _
Wp and Wy are poloidal and
toroidal transit frequency.
10} . approx. boundar
’ Mﬁ;‘?‘*\ bffween passingy&
7% trapped particles
i For trapped particles, the main
resonance condition is:
3.8 0.6 0.4 202 0 _
P, w Wy
where wjy is the toroidal precession
Gmin = 1.321, B4/B; = 0.2 and pu = [7.2,7.3] (E, Py and p are in code units) drift frequency.
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Fishbone nonlinear dynamics
linearly, both passing and trapped particles have contribution to
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Mode structure broaden at low field side nonlinearly.
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The key difference between passing and trapped particles:
trapped particles drift frequency decreases as P
increases, and passing particles are in the opposite.
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Nonlinear dynamic of trapped particles with initial frequency
close to the linear mode frequency:
almost all of those particles stay in resonance.
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Nonlinear dynamic of trapped particles with initial frequency
less than the linear mode frequency,
most of those particles become resonant

—-0.45}

1000 2000 3000 4000 0 1000 2000 3000 4000 —045 —04 -035 —-03 -025 —02
time (74) time (74) P,
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Nonlinear dynamic of trapped particles with initial frequency
larger than the linear mode frequency:
some of those particles become resonant
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Nonlinear dynamic of passing particles with initial frequency close to the linear mode frequency:
some of those particles stay in resonance, and they may also break from resonance.
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Trapped particles keeping resonance more easily than passing particles, most particles
with initial frequency lower than mode linear frequency become resonant nonlinearly.
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Particles with initial frequency lower than mode linear frequency can
contribute more energy than linear resonant particles in nonlinear phase
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The wave particle trapping is in adiabatic regime
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The distribution function become flat around the resonant region.
Flatting region increases as the mode frequency chirping down

Trapped particles Passing particles
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Flatting region increases with resonant particles keep moving out.

The trapped particle induce redistribution has a structure like a clump,

while the resonant island in phase space is wide, comparable with the clump shift
distance.
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The distribution function become flat around the resonant region, and as the mode
frequency chirping down, trapped particles transport from the core to the edge.

Py Py

Fishbone non inear dynamics
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Conclusions

Rotation effect is destabilizing for fishbone at higher and lower
qmin :
Linearly, passing particles are important to drive fishbone mode.

The fishbone nonlinear chirping is mainly due to the trapped
resonant particles moving outward radially while keeping
resonance with the mode.

Due to the frequency profile in space, passing particles are difficult
to keep in resonance nonlinearly.

Nonlinearly, as the mode frequency chirping down, linearly non-
resonant particles could turn into resonance. This additional factor
plays an important role to sustain the mode nonlinearly.

The phase space island is large in P, and induces a significant
flattening region in the dlstrlbutlon function.



