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High frequency compressional (CAE) and global (GAE) Alfvén 
Eigenmodes are often driven unstable by super-Alfvénic 
beam ions in NSTX. These modes have been identified as 
part of an energy channeling mechanism that may explain 
observed anomalous electron temperature profile flattening in 
beam-heated NSTX plasmas. 3D hybrid simulations using the 
HYM code are conducted to study the excitation and stability 
properties of such CAE and GAE modes in H-mode NSTX 
discharge 141398. HYM uses a delta-f particle treatment of 
the energetic beam ions coupled to a single fluid resistive 
MHD model of the bulk thermal plasma. Parameters in the 
beam ion distribution function are varied in order to explore 
mode stability in pitch-energy space. 

Abstract
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CAE/GAE May Limit ST Performance

• Many beam-heated NSTX discharges 
exhibit anomalously flat Te profile.
– Correlates with increased beam power, 

strong CAE/GAE activity [Stutman, PRL 2009] 

• Multiple potential flattening 
mechanisms 
– Enhanced electron transport due to orbit 

stochasticity from multiple GAE [Gorelenkov, NF 2010] 

– Energy channeling via mode conversion 
from core CAE to edge KAW [Belova, PRL 2015]

• Vital to understand preferential conditions for exciting 
(or suppressing) these allegedly deleterious modes. 
– Anomalously low Te could threaten future ST development.
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Review of CAE/GAE Mode Properties

• Compressional AE 
(CAE)/fast magnetosonic
– Compressional polarization
 δB ~ δB|| >> δB┴ ~ 0

– Disperson: ω ~ k vA

– Core localized 

• Global AE (GAE) 
– Shear polarization
 δB ~ δB┴ >> δB|| ~ 0

– Dispersion: ω ~ k||vA

– Broader mode structure

• Common Properties
– Typical frequency in range 0.3ωci < ω < ωci

– Normal plasma mode (e.g exist with or without EP present)
– May be driven unstable through energetic particle resonances 
 ω = k||v||

 ω = k||v|| + ωci
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HYM Hybrid MHD/Particle Code

•  • Allows investigation of kinetic effects on MHD modes in 
toroidal geometry 

• 3D nonlinear, parallel 
• Several physical models 

– Resistive MHD & Hall MHD 
– Hybrid (fluid electrons, particle ions) 
– MHD/particle (one fluid bulk plasma, energetic particle ions) 

• Full-orbit kinetic ions 
• Delta-f numerical scheme to reduce noise
• Self consistently solves for equilibrium including 

energetic particle effects 
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HYM Physical Equations

Single fluid 
thermal plasma

Delta-f energetic ions
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Fast Ion Distribution Function

 



8APS DPP 57, J.B. Lestz, E.V. Belova, N.N. Gorelenkov

NSTX H-mode Shot 141398
• 90 keV NBI 
at 6 MW 

• v0 = 4.9 vA 

• Nb/ne ~ 5% 

 • n
e
 = 6 x 1019 m-3

• B
tor,0

=0.325 T 

• I
p
 = 0.8 MA

[Figures from Fredrickson, PoP 2013
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CAE & GAE Observed in Experiment

• Fredrickson observes 3 groups of modes
– Co-propagating CAE 

 n=6-14

 0.5ωci < ω < 0.75ωci

– Counter-propagating CAE & GAE 
 0.15ωci  < ω < 0.35ωci

– Kinks correlated with high frequency co-CAE 
 ω ~ .005ωci

• Crocker identifies 2 groups of modes
– ω < 0.25ωci  CAE
 -6 < n < -8

– ω > 0.25ωci  GAE
 |n| ≤ 5, mostly counter-propagating 

[Fredrickson, PoP. 2013]

[Crocker, Nucl. Fus. 2013]
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Stability Results 

• Most unstable modes found with n ~ 5-12
• White circles are stable modes in simulation
• n=7,11,13-15,>16 not yet analyzed  
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Stability Results
• In general, growth rate 

increases with beam energy
– Notable exception: n=8,9 have 

local maxima 

• Stability boundaries are not simple v,v||,v┴, 
or λ contours
– n=3-6 growth rates trend with v┴

– n=1,2,16 growth rates trend with v||

– n=8-10,12 show mixed behavior
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Mode Frequencies Shift with λ,E 
• Three groups of frequencies identified

– ω < .05ωci (n=1,2)

– 0.1ωci < ω < 0.4ωci (n=3-6,8-10,12)

– ω > 0.5ωci (n=4-6,8-10,12,16) 

• Fixing λ, many modes have frequency decrease with energy 
– Most dramatically n=5, 6, 8, 9

• A few exhibit the reverse: frequency increasing with energy  
– n=4,10
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3 Groups of Mode Frequencies
• Moderate frequencies (0.2ωci-0.4ωci) decrease for n<7, increase for n>7

• High frequency modes require larger beam energy, otherwise all simple 
parameters are well represented across all frequencies
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 CAE/KAW Polarization
• Very core-localized, compressional, typically low poloidal mode number (m=0-2)

• KAW visible in δB┴, comparable or larger in magnitude than CAE

• Left: n=4,λ=0.7,v=5.0,f~870kHz. Right: n=10,λ=0.7,v=5.0,f~1350kHz 
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GAE Polarization
• Core-localized, typically low poloidal mode number (m=0-1)

• Shear polarization with δB||/δB┴~10, but δB|| not entirely negligible

• Left: n=8,λ=0.7,v=4.0,f~520kHz. Right: n=10,λ=0.1,v=5.0,f~800kHz
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Low Frequency Mode Polarization

• Mixed polarization, though often δB┴ > δB||

• Higher poloidal mode number (m=3-4) than CAE/GAE (m=0-2)
• Left: n=1,λ=0.9,v=5.5,f~40kHz. Right: n=2,λ=0.3,v=6.0,f~40kHz
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Summary and Conclusions

• Hybrid simulations conducted to investigate dependence of 
CAE/GAE stability on beam ion parameters
– n=1-6,8-10,12,16 simulated with 2.5≤v0/vA≤6.0, 0.1≤λ0≤0.9 

• 3 frequency groups of unstable modes found
– Low (0.01~0.05ωci), moderate (0.2~0.4ωci), high (0.5~0.65ωci)

• 3 groups of modes identified 
– CAE, GAE in n>2, broad frequency range (f=300-1625kHz)
– TAE/kink/??? only in n=1,2, very low frequency (f=25-125kHz)

• Stability boundaries do not correspond to level surfaces of 
v,v||,v┴, or λ. Almost all modes grow faster with larger v.

• At fixed n,λ, some mode frequencies decrease significantly

• In general, v/vA  4 turns off most unstable modes  ≲
– Easily accessibly in NSTX-U with Btor increasing by factor of 2
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Further Work in Progress

• Wealth of simulation data remains for further analysis
– ~200 unstable modes to be systematically classified in each case by...
 Co- or counter-propagating relative to beam
 Compressional or shear polarization – CAE vs GAE vs ???
 Identify groups of resonant particles

• Further investigate low n, low frequency modes 
– TAE or kink or something else? Why not seen in n>3? 

• Develop theory to explain simulation results
– Can the marginal stability boundary be predicted? 
– For fixed n & λ: why the occasionally large change in frequency? 

• Comparison of simulation results to experimental data
– At the parameters used in this discharge (v/vA=4.9, λ=0.7), do we see the 

same modes? 
– Do similar discharges agree with other points in parameter space?
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