

center-stack C

- Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond
- Develop solutions for the plasma-material interface challenge
- Advance ST as candidate for **Fusion Nuclear Science** Facility (FNSF)
- Develop ST as fusion energy systems

ST Pilot Plant

Non-inductive ramp-up from ~0.4MA to ~1MA projected to be possible with new centerstack (CS) + more tangential 2nd NBI

100% non-inductive operating points projected for a range of toroidal fields, densities, and confinement levels

 $B_T = 1.0 T$, $I_P = 1MA$, $P_{ini} = 12.6MW$ **Contours of Non-Inductive Fraction** 0.9 $\diamond \diamond$ 0.5 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Contours of q_{min} 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Projected Non-Inductive Current

Levels for k~2.85, A~1.75, f _{GW} =0.7				
Β _T [T]	P _{inj} [MW]	I _P [MA]		
0.75	6.8	0.6-0.8		
0.75	8.4	0.7-0.85		
1.0	10.2	0.8-1.2		
1.0	12.6	0.9-1.3		
1.0	15.6	1.0-1.5		

From GTS (ITG) and GTC-Neo (neoclassical): $c_{i,ITG}/c_{i,Neo} \sim 10^{-2}$

Assumption of neoclassical ion thermal transport should S. Gerhardt, et al., Nucl. Fusion 52 (2012) 083020 be valid

NSTX-U will investigate detachment and high-flux-expansion "snowflake" divertor for heat flux mitigation

NSTX-U: U/D balanced snowflake has < 10MW/m² at I_P = 2MA, P_{AUX}=10-15MW

Continued Improvement in Plasma Current and Duration in Sixteen Plasma Shots over 1.5 Days

160 140 140 120 100 80 80 40 0 1 2 3	XMP-100 8/10/15 4 5 6 7 8 9
Centerir gap le Larg Reduci Inc More	ng plasma a engthened o er PF3/PF5 im Modest impro ng prefill fue ramp rate reased maxim e importantly, w Performanc Better Once V

ardware

ntrols

All center stack sensors mounted &	ex-vessel terminations completed
WHD/Magnetics/ReconstructionMagnetics for equilibrium reconstructionHalo current detectorsHigh-n and high-frequency Mirnov arraysLocked-mode detectorsRWM sensorsProfile DiagnosticsMPTS (42 ch, 60 Hz)T-CHERS: T _i (R), V _{KI} (r), n _c (R), n _{Li} (R), (51 ch)P-CHERS: V _{KI} (r) (71 ch)MSE-CIF (18 ch)MSE-LIF (20 ch)ME-SXR (40 ch)Midplane tangential bolometer array (16 ch)Chronous CompositionMicrowave Reflectometer,Microwave Reflectometer,Microwave InterferometerUltra-soft x-ray arrays - multi-colorEnergetic Particle DiagnosticsFast Ion D _{KI} profile measurement (perp + tang)Solid-State neutral particle analyzerFast lost-ion probe (energy/pitch angle resolving)Neutron measurementsNew capability,Charged Fusion Product	Edge Divertor Physics Gas-puff Imaging (500kHz) Langmuir probe array Edge Rotation Diagnostics (T _i , V _X , V _{pol}) 1-D CCD H _X cameras (divertor, midplane) 2-D divertor fast visible camera Metal foil divertor bolometer AXUV-based Divertor Bolometer IR cameras (30Hz) (3) Fast IR camera (two color) Tile temperature thermocouple array Divertor fast eroding thermocouple Dust detector Edge neutral pressure gauges Material Analysis and Particle Probe Divertor VUV Spectrometer FIReTIP interferometer Fast visible cameras Visible bremsstrahlung radiometer Visible bremsstrahlung radiometer Visible filterscopes (hydrogen & impurity lines) Wall coupon analysis

Progress toward commissioning and plasma operation in NSTX-U Masayuki Ono and the NSTX-U Team

Substantial Increase in NSTX-U Device / Plasma Performance To provide data base to support ST-FNSF designs and ITER operations

New Digital System Provides Comprehensive Coil Protection Protects NSTX-U machine against electromagnetic loads

Computes forces and stresses in real-time based on reduced models of the full mechanical structure

Redundant systems both systems were available for CD-4!

System #1 is used during rectifier dummy-load testing, ISTP, and CD-4 plasma ops.

System #2 is also exercised and supported CD-4.

Full commissioning system will be a key part of early operations and it is working very well!

NSTX-U diagnostics to be installed during first year

New Center-Stack Installed In NSTX-U (October 24, 2014)

August 2015	Septen	nber 2015	October 2015		Novembe 2015		.015
PTP/ISTP R/R, V PF1b,	/ent dTMB	Bake	out	Ро	st bake	ISTP	Commiss ioning
CD4 Firs	st Plasm	a (8/10)				Boro	nizatior
Dummy load test MPTS R&R comple	ing eted			Bake A b a	out co Achiev Dest co Achiev	oncluc ed 3. ompai ed in	1ed or 8x10 ⁻⁶ red to 2010
NBI 1 & 2 - Source MAPP, Fast Mirnov VIPS, etc.	es are bei , X-ray, bo	ng condition plometer, pla	ed sma TV,	• The May	NBI C / 11, 20	D-4 K 015.	PP acł
Boronization, GDCs Divertor inj., MGI, C	, gas Injeo Gl, etc.	ctor-4, LITER	R, SGI,	• The Aug	CS CI just 10	D-4 KF , 2015	P ach

kV in the RF test-stand. Benefit of backplate grounding for arc prevention found - RF diagnostics also installed.

Recent Aerial View of the NSTX-U Test Cell

NCC Coils Design Activity Made Significant Progress

Develop engineering design and cost/schedule NCC = <u>N</u>on-axisymmetric <u>C</u>ontrol <u>C</u>oil

U.S. DEPARTMENT OF

- Order of test sample is placed: Dia. 0.965 Conductor Dia. 0.58, Length 20 feets are thermal capability, manufacturability, impact on interfacing objects, fabrication lead time and cost.
- Helium cooling system or no direct cooling options will be quantified.
- A WAF estimate (cost and schedule) will be prepared as part of the CDR which is targeted for May, 2016.

Office of

Science

kA.0.1 MW/m2 Plasma Heating.5s pulse.1200 s rep

28 GHz ECH System Design Progressing Well **Develop engineering design and cost/schedule this year**

- CHI can form a 200-400 kA seed plasma, but it is too cold for HHFW absorption.
- Use of ECH can "bridge the T_e gap" to where HHFW and then NB current drive can support the ramp and sustain the current – crucial for OH solenoid-free compact STs.
- Good first pass absorption predicted.

28 GHz Gyrotron Room

Goal of first ECH power in 2019 run with 15% incremental funding.

TFTR TEST CELL BASEMENT elevation - 78 ft Gyroton room Power Supply Room^{-U Coils & NB}

Gyrotron will be located in the TFTR basement Stray magnetic fields was measured to be negligible.

A commercial waveguide manufacturer was contacted and expect be able to complete the list of the components we need for our NSTX-U 1+ MW ECH waveguide system.

Formulating Strategy Toward Full NSTX-U Parameters After CD-4, the plasma operation could enter quickly into new regimes

NSTX-U Test Cell

· · · · · · · · · · · · · · · · · · ·					
	NSTX (Max.)	Year 1 NSTX-U Operations (2016)	Year 2 NSTX-U Operations (2017)	Year 3 NSTX-U Operations (2018)	Ultimate Goal
I _Р [МА]	1.2	~1.6	2.0	2.0	2.0
Β _τ [T]	0.55	~0.8	1.0	1.0	1.0
Allowed TF I ² t [MA ² s]	7.3	80	120	160	160
I_P Flat-Top at max. allowed I ² t, I _P , and B _T [s]	~0.4	~3.5	~3	5	5

- 1^{st} year goal: operating points with forces up to $\frac{1}{2}$ the way between NSTX and NSTX-U, ¹/₂ the design-point heating of any coil • Will permit up to \sim 5 second operation at B_T \sim 0.65
- 2nd year goal: Full field and current, but still limiting the coil heating • Will revisit year 2 parameters once year 1 data has been accumulated
- 3rd year goal: Full capability

