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Overview

« A major goal of NSTX-U is to demonstrate fully non-inductive
operation

« Early experiments focus on non-inductive sustainment and
will begin with inductive start-up and ramp-up

* In this work, TRANSP is used to study the dynamic response of
the plasma during such experiments
— The effect of various parameter perturbations on the dynamic response is
studied
* The potential for using feedback control of the available
actuators to improve the system response and reject
perturbations is explored

A framework for feedback control simulations in TRANSP
is used as a platform for assessing controller performance

This research was supported by the U.S. Department of Energy under contract number DE-
AC02-09CH11466 and by an appointment to the U.S. Department of Energy Fusion Energy Postdoctoral
Research Program administered by the Oak Ridge Institute for Science and Education.
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NSTX-U improves controllability and brings
about new control requirements
 New opportunities to use feedback control to optimize
performance as a result of:

— Longer pulse length, increased toroidal field, increased heating
and current drive

« Advanced control will be necessary for achieving
many operational goals, e.qg.,

— Non-inductive scenarios, snowflake divertor, rotation control,
current profile control
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A major goal of NSTX-U is to study non-
inductive operation

« A spherical torus based design may be an economical option for
a fusion nuclear science facility (FNSF)

« However, designs have little to no room for a central solenoid
— Plasma current would need to be generated non-inductively

* The upgrades to the device in the NSTX-U project will enable
the study of non-inductive scenarios
— Start-up, ramp-up, and flattop current sustainment

* Early experiments will look at non-inductive current
sustainment after inductive start-up/ramp-up
— Solenoid current will be "frozen’ to mimic solenoid-free operation

— Plasma current evolution determined by coupling between kinetic and
magnetic profiles

— Resulting dynamics may be intolerably slow (maybe unstable) and highly
sensitive to perturbations in profiles, confinement, etc.
- Can feedback control with the available actuators be used to
improve response and achieve desired conditions?
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The need for high-fidelity control simulations

« Control design typically relies on reduced modeling to make
the design problem easier

e S S >
First-principles Sipliiedmede. Model for :
Actual system (empirical/analytical Control design

model scalings control design

Testing

* When tested experimentally, the nonlinearities and coupling
of the actual system may egrade performance

— Dedicated experimental time needed for commissioning
 Testing controllers using the integrated modeling code
TRANSP prior to implementation may:

— Improve controller performance and reduce time for commissioning
and fine tuning

— Enable demonstration of new control techniques to justify
Implementation and experimental time
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Approach to predictive TRANSP simulations
of NSTX-U

* The computational approach used in this work has
evolved from NSTX-U steady-state scenario

development studies
— S. Gerhardt (Nuclear Fusion 2012)
— T, profile predicted from Chang-Hinton model

— MHD equilibrium calculated using free boundary code ISOLVER

= |SOLVER determines coil currents that best fit the reference plasma
boundary

= Circuit equations are solved to determine induced vessel currents

= Magnetic diffusion equation is evolved using the inductive coupling between
the plasma and coils/vessel as boundary condition

— Beam heating and current drive profiles calculated using NUBEAM
with beam shielding calculated by Lin-Liu and Hinton model
— Sauter model used for bootstrap current

— Z 4 prescribed, used to calculate n, assuming carbon as the only
Impurity
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The ‘Expert file’ enables custom run-specific
code to be included in a TRANSP run

Subroutine expert (ID)

<TRANSP source code>

|lcall expert (ID) if ID ==
<custom calculations>
<more TRANSP code> endif

« Expert file modules have been developed for control
simulations

— Temperature and density profile scaling

» Uses TRANSP calculated power balance and a confinement scaling law
to evolve the stored energy

= Evolves density to match prescribed Greenwald fraction, line-averaged
density, total particle inventory, etc.

— Control algorithm implementation
= Mimics PCS implementation, enables ‘real-time’ actuator changes
= User includes controller matrices and target trajectories with run
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Control of stored energy, gy, and |

 Flexible algorithm for individually or simultaneously controlling scalar and
profile parameters is planned for implementation on NSTX-U
— Implemented in TRANSP Expert file for testing

« Multiple actuators available
— Six beam sources, outer gap size considered in this work

» Two algorithms: PID formulation and state-space formulation (PID used in
this work)
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Open loop reference TRANSP simulation
with fixed solenoid current
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Mid-plane outer gap size as actuator for q

» Most approaches to current profile
control assume the plasma
boundary to be held fixed by a ,..omalloutergap ~  Largeouter gap
shape controller ] 1 M ;

« Boundary can have strong effecton 13-
q profile through ]
— Effect on beam deposition profile ]
— Effect on bootstrap current through 05

change in elongation '

« Two reference boundaries with :
different outer gap sizes were 0.5
chosen, and interpolated between
based on the feedback controller
request 154

Reference plasma boundaries:
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Feedback control approach

» Study ability to control g4 By I,, or combinations of
these outputs by varying beam sources and outer gap

— Look at effect on other parameters
— Assess difficulties and limitations
— Guide next step design

* Initially use simple PI (proportional-integral) controllers
« Simplified model identified from TRANSP runs

— Used for initial studies, controller tuning
— Can be used for model-based control design

* Resulting Pl control laws tested in feedback TRANSP
simulations
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Dynamic system ID based on modulation of
beams and outer gap in TRANSP
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optimal model parameters for a chosen . O -
model order using part of data set o ] :
(estimation set) < _0.5] Model s
« Remainder of data (validation set) used to ] TRANSP 1
determine best model order (number of
states)
3 ................................
2>
Al
21
£
0

Pinj03 [MW]

Time [s]

@NSTX-U APS-DPP 2015, Feedback Control in NSTX-U Non-Inductive Scenarios, M.D. Boyer, 11/2015 12



Discussion and future work

* Dynamics of non-inductively sustained NSTX-U plasmas
(with inductive start-up/ramp-up) may be slow and
sensitive to perturbations

— Changes in density may cause q,<1 or slower response

— Profile peaking and confinement degradation may significantly
reduce achieved plasma current

« Matlab and TRANSP simulations indicate feedback control
using beams and outer gap can be used to reject
perturbations, and speed up response

« Strong coupling may make multi-variable control
necessary
— Specific attention to avoiding stability limits may be necessary

- Beam modulation may cause significant oscillations in B
smaller modulations in current |
— Methods to minimize modulations will be studied
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Effect of perturbations on non-inductive
plasma dynamics without feedback control

» Case 1A/B: Density perturbation

—10% increase (A) and decrease (B) in density magnitude,
fixed profile shapes

« Case 2: Confinement degradation
—10% decrease in confinement factor

» Case 3: Altered profile shapes
— Broad reference profiles replaced with peaked profiles

—
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Case 1A/B: Density perturbations
with fixed profile shapes E—
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o and |, feedback control using outer gap
and beam line 2 during Case 1A

« Slight adjustment to outer gap _ ,T20-
and a decrease in beam line2 — "= 151

power

— 1.0 A
SRR
* Drop in heating power leads tcx 0.0

reduction in BN

2.5

05 10 15 20 25 3.0

5.5 \ = — 181
_5.0- Reference ¥ fT_): S ig
=45 Closed loop | 3% 19 1
4.0 . : o 21
— 0.90 05 1.0 15 20 25 3.0
g 0.75 A Time [s]
_a 0601 +— - Matches |, and q, evolution
from reference case
o2 Y  Feedback control maintains
14 =——*  desired |, q;>1 much longer

05 10 15 20 25
Time [s]

50— than open loop case

@NSTX-U APS-DPP 2015, Feedback Control in NSTX-U Non-Inductive Scenarios, M.D. Boyer, 11/2015 16



Case 2: Effect of energy confinement
perturbation
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By and q, feedback using beam line 1 and
outer gap control in Case 2 >
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|, and g, control during Case 2 using beam

line 2 and

gap actuation
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Case 3: Effect of n, and T, profile
perturbations
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o and |, feedback control using outer gap
and beam line 1 durlng Case 3
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(o and |, control using outer gap and beam
I|ne 2 durlng Case 3 with beam modulation
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Target |, and q, control with
wacing | g line 2 and outer gap E—

* Feedback control enables 5.5 -
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Target
tracking

Left: B control w/ beam line 1

Right: g, control w/ outergap  —>
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By @and q, control with
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beam line 1 and outer gap
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