

Initial applications of the non-Maxwellian extension of the full-wave TORIC v.5 code in the mid/high harmonic and minority heating regimes

Nicola Bertelli, E. Valeo, and C. K. Phillips PPPL

57th APS-DPP Conference, Savannah, GA, November 16-20,2015

Outline

- Full wave code TORIC
 - Brief code description
 - TORIC's versions
- Non-Maxwellian extension of TORIC v.5 in minority heating regime
 - Test I: Numerical vs. analytical Maxwellian case in TORIC
 - Bi-Maxwellian distribution
- Non-Maxwellian extension of TORIC v.5 in HHFW heating regime
 - Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor
 - Test II: Numerical vs. analytical Maxwellian case in TORIC
 - Bi-Maxwellian distribution
 - Slowing-down distribution
- Conclusions

TORIC code

The TORIC code solves the wave equation

$$\nabla \times \nabla \times \mathbf{E} = \frac{\omega^2}{c^2} \left[\mathbf{E} + \frac{4\pi i}{\omega} (\mathbf{J}^P + \mathbf{J}^A) \right]$$

for the electric field E.

- $\mathbf{J}^A \rightarrow$ prescribed antenna current density
- $\mathbf{J}^P \rightarrow \mathsf{plasma}$ current density

$$\mathbf{J}^{P}(\mathbf{x}) = \int \mathrm{d}\mathbf{x}' \boldsymbol{\sigma}(\mathbf{x}, \mathbf{x}') \cdot \mathbf{E}(\mathbf{x}')$$

- Conductivity tensor $\sigma[f_0(\mathbf{x}, \mathbf{v})]$, is a functional of f_0 , which is, in general, <u>non-Maxwellian</u>

Spectral ansatz

$$\mathbf{E}(\mathbf{r},t) = \sum_{m,n} \mathbf{E}^{mn}(\psi) e^{i(m\theta + n\phi - \omega t)}$$

m
ightarrow poloidal mode number; n
ightarrow toroidal mode number

• Principal author M. Brambilla (IPP Garching, Germany)

- For each toroidal component one has to solve a (formally infinite) system of coupled ordinary differential equations for the physical components of $E^{mn}(\psi)$, written in the local field-aligned orthogonal basis vectors.
- The Spectral Ansatz transforms the θ -integral of the constitutive relation into a convolution over poloidal modes.
- Due to the toroidal axisymmetry, the wave equations are solved separately for each toroidal Fourier component.
- A spectral decomposition defines an accurate representation of the "local" parallel wave-vector

 $k^m_{||} = (m \nabla \theta + n \nabla \phi) \cdot \hat{\mathbf{b}}$

- The ψ variation is represented by Hermite cubic finite elements

TORIC's versions

- TORIC: IC frequency regime <u>extended</u> to include non-Maxwellian ions to the second order in $k_{\perp}v_{\perp}/\Omega_c$ (part of the initial work shown by E. J. Valeo at APS-DPP 2011): ADDITIONAL TESTS & INITIAL APPLICATIONS in THIS WORK
- TORIC-HHFW: High Harmonic Fast Wave regime to extend to include non-Maxwellian ions: THIS WORK

 TORIC-LH: LH frequency regime <u>extended</u> to include non-Maxwellian electrons J. C. Wright *et al*, Nucl. Fusion 45 (2005) 1411 & J. C. Wright *et al*, Commun. Comput. Phys. 4 (2008) 545

Non-Maxwellian extension of TORIC v.5 in minority heating regime

Beyond Maxwellian

FLR non-Maxwellian susceptibility in a local coordinate (Stix) frame $(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}})$, with $\hat{\mathbf{z}} = \hat{\mathbf{b}}$, $\mathbf{k} \cdot \hat{\mathbf{y}} = 0$, to second order in $k_{\perp} v_{\perp} / \omega_{c}$

$$\begin{split} \chi_{xx} &= \frac{\omega_{p,s}^2}{\omega} \left[\frac{1}{2} \left(A_{1,0} + A_{-1,0} \right) - \frac{\lambda}{2} \left(A_{1,1} + A_{-1,1} \right) + \frac{\lambda}{2} \left(A_{2,1} + A_{-2,1} \right) \right] \\ \chi_{xy} &= -\chi_{yx} = i \frac{\omega_{p,s}^2}{\omega} \left[\frac{1}{2} \left(A_{1,0} - A_{-1,0} \right) - \lambda \left(A_{1,1} - A_{-1,1} \right) + \frac{\lambda}{2} \left(A_{2,1} - A_{-2,1} \right) \right] \\ \chi_{xz} &= +\chi_{zx} = -\chi_{yx} = \frac{\omega_{p,s}^2}{\omega} \left(\frac{1}{2} \frac{k_{\perp}}{\omega} \right) \left[\left(B_{1,0} + B_{-1,0} \right) - \lambda \left(B_{1,1} + B_{-1,1} \right) + \frac{\lambda}{2} \left(B_{2,1} + B_{-2,1} \right) \right] \\ \chi_{yy} &= \frac{\omega_{p,s}^2}{\omega} \left[2\lambda A_{0,1} + \frac{1}{2} \left(A_{1,0} + A_{-1,0} \right) - \frac{3\lambda}{2} \left(A_{1,1} + A_{-1,1} \right) + \frac{\lambda}{2} \left(A_{2,1} + A_{-2,1} \right) \right] \\ \chi_{yz} &= -\chi_{zy} = i \frac{\omega_{p,s}^2}{\omega} \left(\frac{k_{\perp}}{\omega} \right) \left[B_{0,0} - \lambda B_{0,1} - \frac{1}{2} \left(B_{1,0} + B_{-1,0} \right) - \lambda \left(B_{1,1} + B_{-1,1} \right) \right] \\ &- \frac{\lambda}{4} \left(B_{2,1} + B_{-2,1} \right) \right] \\ \chi_{zz} &= \frac{2\omega_{p}^2}{k_{\parallel} w_{\perp}^2} \left[\left(1 - \lambda \right) B_{0,0} + \int_{-\infty}^{+\infty} dv_{\parallel} \int_{0}^{+\infty} dv_{\perp} v_{\perp} \frac{v_{\parallel}}{\omega} f_0(v_{\parallel}, v_{\perp}) \right] \\ &+ \frac{\lambda}{2} \frac{\omega_{p}^2}{\omega} \left[2 \frac{\omega - \omega_{c}}{k_{\parallel} w_{\perp}^2} B_{1,0} + 2 \frac{\omega + \omega_{c}}{k_{\parallel} w_{\perp}^2} B_{-1,0} \right] \qquad \lambda \equiv \frac{1}{2} \left(\frac{k_{\perp} v_{\perp}}{\omega_{c}} \right)^2 \end{split}$$

Beyond Maxwellian (2)

Evaluations of the FLR susceptibility requires computation of two functions $A_{n,j} B_{n,j}$, for $n = -2 \dots 2$, j = 0, 1, which are v_{\perp} moments of resonant integrals of $f_0(\psi, \frac{B}{B_{\min}}, v_{\parallel}, v_{\perp})$

$$\left\{ \begin{array}{c} A_{n,j} \\ B_{n,j} \end{array} \right\} = \int_{-\infty}^{\infty} \mathrm{d}v_{\parallel} \left\{ \begin{array}{c} 1 \\ v_{\parallel} \end{array} \right\} \frac{1}{\omega - k_{\parallel}v_{\parallel} - n\omega_{\mathrm{c}}} \int_{0}^{+\infty} 2\pi v_{\perp} \mathrm{d}v_{\perp} H_{j}(v_{\parallel}, v_{\perp})$$

with

$$\begin{aligned} H_0(v_{\parallel}, v_{\perp}) &= \frac{1}{2} \frac{k_{\parallel} w_{\perp}^2}{\omega} \frac{\partial f_0}{\partial v_{\parallel}} - \left(1 - \frac{k_{\parallel} v_{\parallel}}{\omega}\right) f_0(v_{\parallel}, v_{\perp}) \\ H_0(v_{\parallel}, v_{\perp}) &= \frac{1}{2} \frac{k_{\parallel} w_{\perp}^2}{\omega} \frac{\partial f_0}{\partial v_{\parallel}} \frac{v_{\perp}^4}{w_{\perp}^4} - \left(1 - \frac{k_{\parallel} v_{\parallel}}{\omega}\right) f_0(v_{\parallel}, v_{\perp}) \frac{v_{\perp}^2}{w_{\perp}^2} \\ \text{and} & w_{\perp}^2 \equiv \int_{-\infty}^{\infty} \mathrm{d}v_{\parallel} \int_0^{+\infty} 2\pi v_{\perp} \mathrm{d}v_{\perp}^2 f_0(v_{\parallel}, v_{\perp}) \end{aligned}$$

χ is pre-computed to reduce TORIC-IC runtime

- A set of N_{ψ} files is constructed, each containing the principal values and residues of χ for a single species on a uniform (v_{\parallel}, θ) mesh, for a specified flux surface ψ_j
- The distribution, $f(v_{\parallel}, v_{\perp})$, is specified in functional form at the minimum field strength point $B(\theta) = B_{\min}$ on ψ_j
- An interpolator returns the components of χ or ε (i.e., the dielectric tensor).

Main parameters:

- Plasma species: electron, D, and minority H (4%)
- $B_{\rm T} = 5 \, \mathrm{T}$
- $I_{\rm p} = 1047 \text{ kA}$
- q(0) = **0.885**
- q at plasma edge = 4.439
- $T_{\rm e}(0) = 2.764 \ {\rm keV}$
- $n_{\rm e}(0) = 1.778 \times 10^{14} \ {\rm cm}^{-3}$
- $T_{\rm D,H}(0) = 2.212 \text{ keV}$
- TORIC resolution:

$$n_{\rm mod} = 255, \, n_{\rm elm} = 480$$

Excellent agreement between numerical and analytical evaluation of the electric field and in terms of absorbed power

Maxw. analytical: $Re(E_+)$

Maxw. numerical: $Re(E_+)$

Absorbed fraction	Maxw. analytical	Maxw. numerical
2nd Harmonic D	10.18	9.91
Fundamental H	69.95	70.50
Electrons - FW	11.35	11.21
Electrons -IBW	8.53	8.38

Bi-Maxwellian distribution

 $f_{\rm H}(v_{\parallel}, v_{\perp}) = (2\pi)^{-3/2} (v_{\rm th,\parallel} v_{\rm th,\perp}^2)^{-1} \exp[-(v_{\parallel}/v_{\rm th,\parallel})^2 - (v_{\perp}/v_{\rm th,\perp})^2]$

with $v_{\mathrm{th},\parallel} = \sqrt{2C_{\parallel}T(\psi)/m_{\mathrm{H}}}$, $v_{\mathrm{th},\perp} = \sqrt{2C_{\perp}T(\psi)/m_{\mathrm{H}}}$, with constants C_{\parallel} and C_{\perp}

- For $C_{\parallel}=1$ and $C_{\perp}=\{.5,1.,3.,5.\},$ $P_{\rm H},$ varied by less than 2%
- For $C_{\perp} = 1$ and $C_{\parallel} = \{.5, 1., 3., 5.\}$, the corresponding $P_{\rm H} = \{61.27\%, 70.50\%, 90.46\%, 94.18\%\}$
 - for small C_{\parallel} , the absorption profile is localized to the resonant layer
 - for large C_{\parallel} , the absorption profile is significantly broadened radially

N. Bertelli | Non-Maxw. TORIC v.5 extensions | 57th APS-DPP Conference, 2015

Non-Maxwellian extension of TORIC v.5 in HHFW heating regime

The susceptibility for a hot plasma with an arbitrary distribution function

Local coordinate frame $(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}})$ with $\hat{\mathbf{z}} = \hat{\mathbf{b}}$ and $\mathbf{k} \cdot \hat{\mathbf{y}} = 0$ (Stix)

$$\begin{split} \boldsymbol{\chi}_{\mathrm{s}} &= \frac{\omega_{\mathrm{ps}}^{2}}{\omega} \int_{0}^{+\infty} 2\pi v_{\perp} \mathrm{d}v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d}v_{\parallel} \hat{\mathbf{z}} \hat{\mathbf{z}} \frac{v_{\parallel}^{2}}{\omega} \left(\frac{1}{v_{\parallel}} \frac{\partial f}{\partial v_{\parallel}} - \frac{1}{v_{\perp}} \frac{\partial f}{\partial v_{\perp}} \right)_{\mathrm{s}} + \\ &+ \frac{\omega_{\mathrm{ps}}^{2}}{\omega} \int_{0}^{+\infty} 2\pi v_{\perp} \mathrm{d}v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d}v_{\parallel} \sum_{n=-\infty}^{+\infty} \left[\frac{v_{\perp} U}{\omega - k_{\parallel} v_{\parallel} - n\Omega_{\mathrm{cs}}} \mathbf{T}_{n} \right] \end{split}$$

where

$$U \equiv \frac{\partial f}{\partial v_{\perp}} + \frac{k_{\parallel}}{\omega} \left(v_{\perp} \frac{\partial f}{\partial v_{\parallel}} - v_{\parallel} \frac{\partial f}{\partial v_{\perp}} \right) \quad \text{and}$$
$$\mathbf{T}_{n} = \begin{pmatrix} \frac{n^{2} J_{n}^{2}(z)}{z^{2}} & \frac{in J_{n}(z) J_{n}'(z)}{z} & \frac{in J_{n}(z) J_{n}'(z)}{z} \\ -\frac{in J_{n}(z) J_{n}'(z)}{z} & (J_{n}'(z))^{2} & -\frac{iJ_{n}^{2}(z) v_{\parallel}}{zv_{\perp}} \\ \frac{n J_{n}^{2}(z) v_{\parallel}}{zv_{\perp}} & \frac{iJ_{n}(z) J_{n}'(z) v_{\parallel}}{v_{\perp}} & \frac{J_{n}^{2}(z) v_{\parallel}}{v_{\parallel}^{2}} \end{pmatrix}, \quad z \equiv \frac{k_{\perp} v_{\perp}}{\Omega_{cs}}$$

NSTX-U N. Bertelli | Non-Maxw. TORIC v.5 extensions | 57th APS-DPP Conference, 2015

Numerical evaluation of $\boldsymbol{\chi}$ needed for arbitrary distribution function

- The "best" approach for a complete extension of the code is to implement directly the general expression for χ (previous slide)
 - Plemelj's formula $\rightarrow \frac{1}{\omega \omega_0 \pm i0} = \wp \frac{1}{\omega \omega_0} \mp i\pi \delta(\omega \omega_0)$
- Integrals in the expression for χ are computed numerous times in TORIC-HHFW so an efficient evaluation is essential
- Strong similarity of the generalization done in TORIC-IC regime
 - integrals in the $v_{\|}\text{-space}$ with the singularity function $(\omega-k_{\|}v_{\|}-n\Omega_{\mathrm{cs}})^{-1}$
 - general integrals' structure and logic of the implementation
 - for TORIC-HHFW: to reconstruct the new integrands including the sum over the harmonic number n and the k_\perp dependence in the argument of the Bessel functions
- Precomputation of χ

The susceptibility for a hot plasma with a Maxwellian distribution function can be evaluated analitically

$$\chi_{\rm s} = \left[\hat{\mathbf{z}} \hat{\mathbf{z}} \frac{2\omega_{\rm p}^2}{\omega k_{\parallel} v_{\rm th}^2} \left\langle v_{\parallel} \right\rangle + \frac{\omega_{\rm p}^2}{\omega} \sum_{n=-\infty}^{+\infty} e^{-\lambda} \mathbf{Y}_n(\lambda) \right]_s$$

where

$$\mathbf{Y}_{n} = \begin{pmatrix} \frac{n^{2}I_{n}}{\lambda}A_{n} & -in(I_{n} - I_{n}')A_{n} & \frac{k_{\perp}}{\omega_{c}}\frac{nI_{n}}{\lambda}B_{n} \\ in(I_{n} - I_{n}')A_{n} & \left(\frac{n^{2}}{\lambda}I_{n} + 2\lambda I_{n} - 2\lambda I_{n}'\right)A_{n} & \frac{ik_{\perp}}{\omega_{c}}(I_{n} - I_{n}')B_{n} \\ \frac{k_{\perp}}{\omega_{c}}\frac{nI_{n}}{\lambda}B_{n} & -\frac{ik_{\perp}}{\omega_{c}}(I_{n} - I_{n}')B_{n} & \frac{2(\omega - n\omega_{c})}{k_{\parallel}v_{\mathrm{th}}^{2}}I_{n}B_{n} \end{pmatrix}$$

 $A_n = \frac{1}{k_{\parallel} v_{\rm th}} Z_0(\zeta_n), \quad B_n = \frac{1}{k_{\parallel}} (1 + \zeta_n Z_0(\zeta_n)), \quad Z_0(\zeta_n) \equiv \text{plasma dispersion func.}$

$$\zeta_n \equiv \frac{\omega - n\omega_c}{k_{\parallel} v_{\rm th}}, \quad \lambda \equiv \frac{k_{\perp}^2 v_{\rm th}^2}{2\Omega_{\rm c}^2}$$

Good agreement between numerical and analytical evaluation of the full hot dielectric tensor

Parameters: $f = 30 \times 10^6$ Hz; $n_{dens} = 5 \times 10^{13}$ cm⁻³, $N_{\parallel} = 10, B = 0.5$ T, $T_i = 20$ keV $N_{harmonics} = 10$ Ion species: Deuterium Black curve: analytical solution

N. Bertelli | Non-Maxw. TORIC v.5 extensions | 57th APS-DPP Conference, 2015

Good agreement between numerical and analytical evaluation of the full hot dielectric tensor (2)

NSTX-U N. Bertelli | Non-Maxw. TORIC v.5 extensions | 57th APS-DPP Conference, 2015

Good agreement between numerical and analytical evaluation of the full hot dielectric tensor: Test on $N_{\rm II}$

Good agreement between numerical and analytical evaluation of the full hot dielectric tensor: Test on $N_{\rm II}$

NSTX-U N. Bertelli | Non-Maxw. TORIC v.5 extensions | 57th APS-DPP Conference, 2015

Good agreement between numerical and analytical evaluation of the full hot dielectric tensor: Test on $N_{\rm II}$

NSTX case

Main parameters:

- Plasma species: electron, D, D-NBI (4%)
- $B_{\rm T} = 0.529 \, {\rm T}$
- $I_{\rm p}=868~{\rm kA}$
- q(0) = 1.52
- q at plasma edge = 18.151
- $T_{\rm e}(0) = 1.093 \text{ keV}$
- $n_{\rm e}(0) = 2.467 \times 10^{13} \ {\rm cm}^{-3}$
- $T_{\rm D}(0) = 1.104 \text{ keV}$
- $T_{\rm D-NBI}(0) = 21.374 \text{ keV}$
- $n_{\rm D-NBI}(0) = 2.011 \times 10^{12} \,{\rm cm}^{-3}$
- TORIC resolution: $n_{\rm mod} = 31$, $n_{\rm elm} = 200$

Excellent agreement between numerical and analytical evaluation of HHFW fields in the midplane

Excellent agreement between numerical and analytical evaluation of the 2D HHFW fields and in terms of absorbed power

Maxw. analytical: $Re(E_{\parallel})$

Maxw. numerical: $Re(E_{\parallel})$

Maxw. analytical: $Re(E_+)$

Maxw. numerical: $Re(E_{\perp})$

Absorbed fraction	Maxw. analytical	Maxw. numerical
D	0.22	0.22
D-NBI	73.88	73.58
Electrons	25.90	26.21

Resolution used for $\chi {:}\; {N_v}_{\parallel} \; = \; 100$ and ${N_v}_{\perp} \; = \; 50$

Bi-Maxwellian distribution

 $f_{\rm D}(v_{\parallel}, v_{\perp}) = (2\pi)^{-3/2} (v_{\rm th,\parallel} v_{\rm th,\perp}^2)^{-1} \exp[-(v_{\parallel}/v_{\rm th,\parallel})^2 - (v_{\perp}/v_{\rm th,\perp})^2]$

with $v_{\mathrm{th},\parallel} = \sqrt{2C_{\parallel}T(\psi)/m_{\mathrm{D}}}$, $v_{\mathrm{th},\perp} = \sqrt{2C_{\perp}T(\psi)/m_{\mathrm{D}}}$, with constants C_{\parallel} and C_{\perp}

- For $C_{\perp} = 1$ and $C_{\parallel} = \{.5, 1., 3., 5.\}$, $P_{\rm D-NBI}$, varied by less than 1%
 - Opposite behavior w.r.t. the IC minority heating regime
 - however, for small (large) C_{\parallel} , the absorption profile is localized to the resonant layers (significantly broadened radially), as found in the IC minority heating regime
- For $C_{\parallel} = 1$ and $C_{\perp} = \{.5, 1., 3., 5.\}$, the corresponding $P_{D-NBI} = \{70.06, 73.56, 62.84, 48.48\}$

N. Bertelli | Non-Maxw. TORIC v.5 extensions | 57th APS-DPP Conference, 2015

Slowing-down distribution

$$f_{\rm D}(v_{\parallel}, v_{\perp}) = \begin{cases} \frac{A}{v_c^3} \frac{1}{1 + (v/v_c)^3} & \text{for } v < v_{\rm m}, \\ 0 & \text{for } v > v_{\rm m} \end{cases} \quad v_{\rm m} \equiv \sqrt{2E_{\rm D-NBI}/m_{\rm D}}$$

 $A = 3/[4\pi \ln(1+\delta^{-3})], \quad \delta \equiv \frac{v_{\rm c}}{v_{\rm m}}, \quad v_{\rm c} = 3\sqrt{\pi}(m_{\rm e}/m_{\rm D})Z_{\rm eff}v_{\rm th}^3, \quad Z_{\rm eff} \equiv \sum_{\rm ions} \frac{Z_{\rm i}^2}{A_{\rm i}}\frac{n_{\rm i}}{n_{\rm e}}$

 $\mathsf{For}\ Z_{\mathrm{eff}} = 2 \ \mathsf{and}\ E_{\mathrm{D-NBI}} = 30, 60, 90, 120 \ \mathsf{keV} \Longrightarrow P_{\mathrm{D-NBI}} = \{77.84\%, 75.85\%, 70.97\%, 64.71\%\}$

- Similar behavior when varied C_{\perp} in the bi-Maxwellian case
- Fast ions absorption, in fact, should decrease with something like $T_{\text{fast ions}}^{-3/2}$

This is due to the behavior of the function $f(\lambda) = \lambda I_n e^{-\lambda}$, which reached a maximum value at $\lambda = n^2/3$. For large λ , $f(\lambda) \propto \lambda^{-3/2}$ [See Stix's book & Ono, PoP 1995]

Conclusions

- Non-Maxwellian extension of TORIC in minority heating regime reproduces previous simulations
 - Excellent agreement of the 2D electric field and in terms of absorbed power
- Implementation of the full hot dielectric tensor reproduces the analytic Maxwellian case
- Non-Maxwellian extension of TORIC in HHFW regime reproduces previous simulations
 - Excellent agreement of the 2D electric field and in terms of absorbed power
- For bi-Maxwellian distribution found two different behaviors:
 - for IC minority heating regime, the absorbed power at the H fundamental is insensitive to variations in T_{\perp} , but varies with changes in T_{\parallel}
 - for HHFW heating regime, the fast ions absorbed power is insensitive to variations in $T_{||},$ but varies with changes in T_{\perp}

however, absorption profile varies with changes in T_{\parallel}

- For slowing down distribution in the HHFW heating regime, the fast ions absorbed power varies with changes in $E_{\rm NBI}$
 - $P_{\rm D-NBI}$ decreases with increasing $E_{\rm NBI}$
 - similar behavior found at large T_{\perp} in the bi-Maxwellian case