Initial applications of the non-Maxwellian extension of the full-wave TORIC v. 5 code in the mid/high harmonic and minority heating regimes

Nicola Bertelli, E. Valeo, and C. K. Phillips PPPL

57th APS-DPP Conference, Savannah, GA, November 16-20,2015

Outline

- Full wave code TORIC
- Brief code description
- TORIC's versions
- Non-Maxwellian extension of TORIC v. 5 in minority heating regime
- Test I: Numerical vs. analytical Maxwellian case in TORIC
- Bi-Maxwellian distribution
- Non-Maxwellian extension of TORIC v. 5 in HHFW heating regime
- Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor
- Test II: Numerical vs. analytical Maxwellian case in TORIC
- Bi-Maxwellian distribution
- Slowing-down distribution
- Conclusions

TORIC code

- The TORIC code solves the wave equation

$$
\nabla \times \nabla \times \mathbf{E}=\frac{\omega^{2}}{c^{2}}\left[\mathbf{E}+\frac{4 \pi i}{\omega}\left(\mathbf{J}^{P}+\mathbf{J}^{A}\right)\right]
$$

for the electric field \mathbf{E}.
$-\mathbf{J}^{A} \rightarrow$ prescribed antenna current density

- $\mathbf{J}^{P} \rightarrow$ plasma current density

$$
\mathbf{J}^{P}(\mathbf{x})=\int \mathrm{d} \mathbf{x}^{\prime} \boldsymbol{\sigma}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \cdot \mathbf{E}\left(\mathbf{x}^{\prime}\right)
$$

- Conductivity tensor $\boldsymbol{\sigma}\left[f_{0}(\mathbf{x}, \mathbf{v})\right]$, is a functional of f_{0}, which is, in general, non-Maxwellian
- Spectral ansatz

$$
\mathbf{E}(\mathbf{r}, t)=\sum_{m, n} \mathbf{E}^{m n}(\psi) e^{i(m \theta+n \phi-\omega t)}
$$

$m \rightarrow$ poloidal mode number; $n \rightarrow$ toroidal mode number

- Principal author M. Brambilla (IPP Garching, Germany)

TORIC code (2)

- For each toroidal component one has to solve a (formally infinite) system of coupled ordinary differential equations for the physical components of $E^{m n}(\psi)$, written in the local field-aligned orthogonal basis vectors.
- The Spectral Ansatz transforms the θ-integral of the constitutive relation into a convolution over poloidal modes.
- Due to the toroidal axisymmetry, the wave equations are solved separately for each toroidal Fourier component.
- A spectral decomposition defines an accurate representation of the "local" parallel wave-vector

$$
k_{\|}^{m}=(m \nabla \theta+n \nabla \phi) \cdot \hat{\mathbf{b}}
$$

- The ψ variation is represented by Hermite cubic finite elements

TORIC's versions

- TORIC: IC frequency regime extended to include non-Maxwellian ions to the second order in $k_{\perp} v_{\perp} / \Omega_{c}$ (part of the initial work shown by E. J. Valeo at APS-DPP 2011): ADDITIONAL TESTS \& INITIAL APPLICATIONS in THIS WORK
- TORIC-HHFW: High Harmonic Fast Wave regime to extend to include non-Maxwellian ions: THIS WORK
- TORIC-LH: LH frequency regime extended to include non-Maxwellian electrons J. C. Wright et al, Nucl. Fusion 45 (2005) 1411 \& J. C. Wright et al, Commun. Comput. Phys. 4 (2008) 545

PART I

Non-Maxwellian extension of TORIC v. 5 in minority heating regime

Beyond Maxwellian

FLR non-Maxwellian susceptibility in a local coordinate (Stix) frame ($\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$), with $\hat{\mathbf{z}}=\hat{\mathbf{b}}, \mathbf{k} \cdot \hat{\mathbf{y}}=0$, to second order in $k_{\perp} v_{\perp} / \omega_{\mathrm{c}}$

$$
\begin{aligned}
& \chi_{x x}=\frac{\omega_{\mathrm{p}, \mathrm{~s}}^{2}}{\omega}\left[\frac{1}{2}\left(A_{1,0}+A_{-1,0}\right)-\frac{\lambda}{2}\left(A_{1,1}+A_{-1,1}\right)+\frac{\lambda}{2}\left(A_{2,1}+A_{-2,1}\right)\right] \\
& \chi_{x y}=-\chi_{y x}=i \frac{\omega_{\mathrm{p}, \mathrm{~s}}^{2}}{\omega}\left[\frac{1}{2}\left(A_{1,0}-A_{-1,0}\right)-\lambda\left(A_{1,1}-A_{-1,1}\right)+\frac{\lambda}{2}\left(A_{2,1}-A_{-2,1}\right)\right] \\
& \chi_{x z}=+\chi_{z x}=-\chi_{y x}=\frac{\omega_{\mathrm{p}, \mathrm{~s}}}{\omega}\left(\frac{1}{2} \frac{k_{\perp}}{\omega}\right)\left[\left(B_{1,0}+B_{-1,0}\right)-\lambda\left(B_{1,1}+B_{-1,1}\right)+\frac{\lambda}{2}\left(B_{2,1}+B_{-2,1}\right)\right] \\
& \chi_{y y}=\frac{\omega_{\mathrm{p}, \mathrm{~s}}}{\omega}\left[2 \lambda A_{0,1}+\frac{1}{2}\left(A_{1,0}+A_{-1,0}\right)-\frac{3 \lambda}{2}\left(A_{1,1}+A_{-1,1}\right)+\frac{\lambda}{2}\left(A_{2,1}+A_{-2,1}\right)\right] \\
& \chi_{y z}=-\chi_{z y}=i \frac{\omega_{\mathrm{p}, \mathrm{~s}}^{2}}{\omega}\left(\frac{k_{\perp}}{\omega}\right)\left[B_{0,0}-\lambda B_{0,1}-\frac{1}{2}\left(B_{1,0}+B_{-1,0}\right)-\lambda\left(B_{1,1}+B_{-1,1}\right)\right. \\
&\left.-\frac{\lambda}{4}\left(B_{2,1}+B_{-2,1}\right)\right] \\
&=\frac{2 \omega_{\mathrm{p}}^{2}}{k_{\|} w_{\perp}^{2}}\left[(1-\lambda) B_{0,0}+\int_{-\infty}^{+\infty} \mathrm{d} v_{\|} \int_{0}^{+\infty} \mathrm{d} v_{\perp} v_{\perp} \frac{v_{\|}}{\omega} f_{0}\left(v_{\|}, v_{\perp}\right)\right] \\
&\left.\chi_{z z}\right) \\
& \frac{\lambda}{2} \frac{\omega_{\mathrm{p}}^{2}}{\omega}\left[2 \frac{\omega-\omega_{\mathrm{c}}}{k_{\|} w_{\perp}^{2}} B_{1,0}+2 \frac{\omega+\omega_{\mathrm{c}}}{k_{\|} w_{\perp}^{2}} B_{-1,0}\right]
\end{aligned}
$$

Beyond Maxwellian (2)

Evaluations of the FLR susceptibility requires computation of two functions $A_{n, j} B_{n, j}$, for $n=-2 \ldots 2, j=0,1$, which are v_{\perp} moments of resonant integrals of $f_{0}\left(\psi, \frac{B}{B_{\text {min }}}, v_{\|}, v_{\perp}\right)$

$$
\left\{\begin{array}{l}
A_{n, j} \\
B_{n, j}
\end{array}\right\}=\int_{-\infty}^{\infty} \mathrm{d} v_{\|}\left\{\begin{array}{c}
1 \\
v_{\|}
\end{array}\right\} \frac{1}{\omega-k_{\|} v_{\|}-n \omega_{\mathrm{c}}} \int_{0}^{+\infty} 2 \pi v_{\perp} \mathrm{d} v_{\perp} H_{j}\left(v_{\|}, v_{\perp}\right)
$$

with
and

$$
\begin{aligned}
H_{0}\left(v_{\|}, v_{\perp}\right) & =\frac{1}{2} \frac{k_{\|} w_{\perp}^{2}}{\omega} \frac{\partial f_{0}}{\partial v_{\|}}-\left(1-\frac{k_{\|} v_{\|}}{\omega}\right) f_{0}\left(v_{\|}, v_{\perp}\right) \\
H_{0}\left(v_{\|}, v_{\perp}\right) & =\frac{1}{2} \frac{k_{\|} w_{\perp}^{2}}{\omega} \frac{\partial f_{0}}{\partial v_{\|}} \frac{v_{\perp}^{4}}{w_{\perp}^{4}}-\left(1-\frac{k_{\|} v_{\|}}{\omega}\right) f_{0}\left(v_{\|}, v_{\perp}\right) \frac{v_{\perp}^{2}}{w_{\perp}^{2}} \\
w_{\perp}^{2} & \equiv \int_{-\infty}^{\infty} \mathrm{d} v_{\|} \int_{0}^{+\infty} 2 \pi v_{\perp} \mathrm{d} v_{\perp}^{2} f_{0}\left(v_{\|}, v_{\perp}\right)
\end{aligned}
$$

is pre-computed to reduce TORIC-IC runtime

- A set of N_{ψ} files is constructed, each containing the principal values and residues of χ for a single species on a uniform $\left(v_{\|}, \theta\right)$ mesh, for a specified flux surface ψ_{j}
- The distribution, $f\left(v_{\|}, v_{\perp}\right)$, is specified in functional form at the minimum field strength point $B(\theta)=B_{\text {min }}$ on ψ_{j}
- An interpolator returns the components of χ or ε (i.e., the dielectric tensor).

Alcator C-Mod case

Main parameters:

- Plasma species: electron, D, and minority H (4\%)
- $B_{\mathrm{T}}=5 \mathrm{~T}$
- $I_{\mathrm{p}}=1047 \mathrm{kA}$
- $q(0)=0.885$

- q at plasma edge $=4.439$
- $T_{\mathrm{e}}(0)=2.764 \mathrm{keV}$
- $n_{\mathrm{e}}(0)=1.778 \times 10^{14} \mathrm{~cm}^{-3}$
- $T_{\mathrm{D}, \mathrm{H}}(0)=2.212 \mathrm{keV}$
- TORIC resolution:

$$
n_{\mathrm{mod}}=255, n_{\mathrm{elm}}=480
$$

Excellent agreement between numerical and analytical evaluation of the electric field and in terms of absorbed power

Maxw. analytical: $\operatorname{Re}\left(E_{-}\right) \quad$ Maxw. numerical: $\operatorname{Re}\left(E_{-}\right)$

Maxw. analytical: $\operatorname{Re}\left(E_{+}\right)$

Maxw. numerical: $\operatorname{Re}\left(E_{+}\right)$

Maxw. analytical: $\operatorname{Re}\left(E_{\|}\right)$

Maxw. numerical: $\operatorname{Re}\left(E_{\|}\right)$

Absorbed fraction	Maxw. analytical	Maxw. numerical
2nd Harmonic D	10.18	9.91
Fundamental H	69.95	70.50
Electrons - FW	11.35	11.21
Electrons -IBW	8.53	8.38

Bi-Maxwellian distribution

$$
f_{\mathrm{H}}\left(v_{\|}, v_{\perp}\right)=(2 \pi)^{-3 / 2}\left(v_{\mathrm{th}, \|} v_{\mathrm{th}, \perp}^{2}\right)^{-1} \exp \left[-\left(v_{\|} / v_{\mathrm{th}, \|}\right)^{2}-\left(v_{\perp} / v_{\mathrm{th}, \perp}\right)^{2}\right]
$$

with $v_{\text {th, } \|}=\sqrt{2 C_{\|} T(\psi) / m_{\mathrm{H}}}, v_{\text {th }, \perp}=\sqrt{2 C_{\perp} T(\psi) / m_{\mathrm{H}}}$, with constants $C_{\|}$and C_{\perp}

- For $C_{\|}=1$ and $C_{\perp}=\{.5,1 ., 3 ., 5\},. P_{\mathrm{H}}$, varied by less than 2%
- For $C_{\perp}=1$ and $C_{\|}=\{.5,1 ., 3 ., 5$.$\} , the corresponding P_{\mathrm{H}}=\{61.27 \%, 70.50 \%, 90.46 \%, 94.18 \%\}$
- for small $C_{\|}$, the absorption profile is localized to the resonant layer
- for large $C_{\|}$, the absorption profile is significantly broadened radially

$$
C_{\perp}=1, C_{\|}=0.5
$$

$$
C_{\perp}=1, C_{\|}=1
$$

$$
C_{\perp}=1, C_{\|}=5.0
$$

PART II

Non-Maxwellian extension of TORIC v. 5 in HHFW heating regime

The susceptibility for a hot plasma with an arbitrary distribution

 functionLocal coordinate frame ($\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$) with $\hat{\mathbf{z}}=\hat{\mathbf{b}}$ and $\mathbf{k} \cdot \hat{\mathbf{y}}=0$ (Stix)

$$
\begin{aligned}
\chi_{\mathrm{s}} & =\frac{\omega_{\mathrm{ps}}^{2}}{\omega} \int_{0}^{+\infty} 2 \pi v_{\perp} \mathrm{d} v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d} v_{\|} \hat{\mathbf{z}} \hat{\mathbf{z}} \frac{v_{\|}^{2}}{\omega}\left(\frac{1}{v_{\|}} \frac{\partial f}{\partial v_{\|}}-\frac{1}{v_{\perp}} \frac{\partial f}{\partial v_{\perp}}\right)_{\mathrm{s}}+ \\
& +\frac{\omega_{\mathrm{ps}}^{2}}{\omega} \int_{0}^{+\infty} 2 \pi v_{\perp} \mathrm{d} v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d} v_{\|} \sum_{n=-\infty}^{+\infty}\left[\frac{v_{\perp} U}{\omega-k_{\|} v_{\|}-n \Omega_{\mathrm{cs}}} \mathbf{T}_{n}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } \\
& \qquad U \equiv \frac{\partial f}{\partial v_{\perp}}+\frac{k_{\|}}{\omega}\left(v_{\perp} \frac{\partial f}{\partial v_{\|}}-v_{\|} \frac{\partial f}{\partial v_{\perp}}\right) \quad \text { and } \\
& \mathbf{T}_{n}=\left(\begin{array}{ccc}
\frac{n^{2} J_{n}^{2}(z)}{z^{2}} & \frac{i n J_{n}(z) J_{n}^{\prime}(z)}{z} & \frac{n J_{n}^{2}(z) v_{\|}}{z v \nu_{\|}} \\
-\frac{i n J_{n}(z) J_{n}^{\prime}(z)}{z} & \left(J_{n}^{\prime}(z)\right)^{2} & -\frac{i J_{n}(z) J_{n}^{\prime}(z) v_{\|}}{v_{\perp}} \\
\frac{n J_{n}^{2}(z) v_{\|}}{z v_{\perp}} & \frac{i J_{n}(z) J_{n}^{\prime}(z) v_{\|}}{v_{\perp}} & \frac{J_{n}^{2}(z) v_{\|}^{2}}{v_{\perp}^{2}}
\end{array}\right), \quad z \equiv \frac{k_{\perp} v_{\perp}}{\Omega_{\mathrm{CS}}}
\end{aligned}
$$

Numerical evaluation of χ needed for arbitrary distribution func-

 tion- The "best" approach for a complete extension of the code is to implement directly the general expression for χ (previous slide)
- Plemelj's formula $\rightarrow \frac{1}{\omega-\omega_{0} \pm i 0}=\wp \frac{1}{\omega-\omega_{0}} \mp i \pi \delta\left(\omega-\omega_{0}\right)$
- Integrals in the expression for χ are computed numerous times in TORIC-HHFW so an efficient evaluation is essential
- Strong similarity of the generalization done in TORIC-IC regime
- integrals in the $v_{\|}$-space with the singularity function $\left(\omega-k_{\|} v_{\|}-n \Omega_{\mathrm{cs}}\right)^{-1}$
- general integrals' structure and logic of the implementation
- for TORIC-HHFW: to reconstruct the new integrands including the sum over the harmonic number n and the k_{\perp} dependence in the argument of the Bessel functions
- Precomputation of χ

The susceptibility for a hot plasma with a Maxwellian distribution function can be evaluated analitically

$$
\chi_{\mathrm{s}}=\left[\hat{\mathbf{z}} \hat{\mathbf{z}} \frac{2 \omega_{\mathrm{p}}^{2}}{\omega k_{\|} v_{\mathrm{th}}^{2}}\left\langle v_{\|}\right\rangle+\frac{\omega_{\mathrm{p}}^{2}}{\omega} \sum_{n=-\infty}^{+\infty} e^{-\lambda} \mathbf{Y}_{n}(\lambda)\right]_{s}
$$

where

$$
\begin{gathered}
\mathbf{Y}_{n}=\left(\begin{array}{ccc}
\frac{n^{2} I_{n}}{\lambda} A_{n} & -i n\left(I_{n}-I_{n}^{\prime}\right) A_{n} & \frac{k_{\perp}}{\omega_{c}} \frac{n I_{n}}{\lambda} B_{n} \\
i n\left(I_{n}-I_{n}^{\prime}\right) A_{n} & \left(\frac{n^{2}}{\lambda} I_{n}+2 \lambda I_{n}-2 \lambda I_{n}^{\prime}\right) A_{n} & \frac{i k_{\perp}}{\omega_{c}}\left(I_{n}-I_{n}^{\prime}\right) B_{n} \\
\frac{k_{\perp}}{\omega_{c}} \frac{n I_{n}}{\lambda} B_{n} & -\frac{i k_{\perp}}{\omega_{c}}\left(I_{n}-I_{n}^{\prime}\right) B_{n} & \frac{2\left(\omega-n \omega_{c}\right)}{k_{\|} v_{\mathrm{th}}^{2}} I_{n} B_{n}
\end{array}\right) \\
A_{n}=\frac{1}{k_{\|} v_{\mathrm{th}}} Z_{0}\left(\zeta_{n}\right), \quad B_{n}=\frac{1}{k_{\|}}\left(1+\zeta_{n} Z_{0}\left(\zeta_{n}\right)\right), \quad Z_{0}\left(\zeta_{n}\right) \equiv \text { plasma dispersion func. } \\
\zeta_{n} \equiv \frac{\omega-n \omega_{c}}{k_{\|} v_{\mathrm{th}}}, \quad \lambda \equiv \frac{k_{\perp}^{2} v_{\mathrm{th}}^{2}}{2 \Omega_{\mathrm{c}}^{2}}
\end{gathered}
$$

Good agreement between numerical and analytical evaluation of the full hot dielectric tensor

Parameters:

$$
\begin{aligned}
& f=30 \times 10^{6} \mathrm{~Hz} ; n_{\text {dens }}=5 \times 10^{13} \mathrm{~cm}^{-3}, \\
& N_{\|}=10, B=0.5 \mathrm{~T}, T_{i}=20 \mathrm{keV} \\
& N_{\text {harmonics }}=10 \\
& \text { lon species: Deuterium } \\
& \text { Black curve: analytical solution }
\end{aligned}
$$

	$N_{v_{\\|}}$	$N_{v_{\perp}}$
-	100	50
-	200	100
-	324	150
-	650	300
-	1300	600
-	2600	1200

Good agreement between numerical and analytical evaluation of

 the full hot dielectric tensor (2)

Good agreement between numerical and analytical evaluation of the full hot dielectric tensor: Test on $N_{\|}$
$\operatorname{Re}\left(\varepsilon_{x x}\right)$

Black and Blue lines: analytical solutions

	$N_{v_{\\|}}$	$N_{v_{\perp}}$
$-\odot$	2600	1200

$\operatorname{Re}\left(\varepsilon_{x y}\right)$

$\operatorname{Im}\left(\varepsilon_{x x}\right)$

$\operatorname{Im}\left(\varepsilon_{x y}\right)$

Good agreement between numerical and analytical evaluation of the full hot dielectric tensor: Test on $N_{\|}$
$\operatorname{Re}\left(\varepsilon_{x z}\right)$

$\operatorname{Re}\left(\varepsilon_{y y}\right)$

$\operatorname{Im}\left(\varepsilon_{x z}\right)$

$\operatorname{Im}\left(\varepsilon_{y y}\right)$

Good agreement between numerical and analytical evaluation of the full hot dielectric tensor: Test on $N_{\|}$

NSTX case

Main parameters:

- Plasma species: electron, D, D-NBI (4\%)
- $B_{\mathrm{T}}=0.529 \mathrm{~T}$
- $I_{\mathrm{p}}=868 \mathrm{kA}$
- $q(0)=1.52$
- q at plasma edge $=18.151$
- $T_{\mathrm{e}}(0)=1.093 \mathrm{keV}$
- $n_{\mathrm{e}}(0)=2.467 \times 10^{13} \mathrm{~cm}^{-3}$
- $T_{\mathrm{D}}(0)=1.104 \mathrm{keV}$
- $T_{\mathrm{D}-\mathrm{NBI}}(0)=21.374 \mathrm{keV}$
- $n_{\text {D-NBI }}(0)=2.011 \times 10^{12} \mathrm{~cm}^{-3}$
- TORIC resolution: $n_{\text {mod }}=31, n_{\text {elm }}=200$

Excellent agreement between numerical and analytical evaluation of HHFW fields in the midplane

$\operatorname{Re}\left(E_{-}\right)$

- Numerical

$$
N_{v_{\|}}=100, N_{v_{\perp}}=50
$$

$\operatorname{Re}\left(E_{+}\right)$

$\operatorname{Im}\left(E_{+}\right)$

Excellent agreement between numerical and analytical evaluation of the 2D HHFW fields and in terms of absorbed power

Maxw. analytical: $\operatorname{Re}\left(E_{-}\right) \quad$ Maxw. numerical: $\operatorname{Re}\left(E_{-}\right)$

Maxw. numerical: $\operatorname{Re}\left(E_{+}\right)$

Maxw. analytical: $\operatorname{Re}\left(E_{+}\right)$

Maxw. analytical: $\operatorname{Re}\left(E_{\|}\right) \quad$ Maxw. numerical: $\operatorname{Re}\left(E_{\|}\right)$

Absorbed fraction	Maxw. analytical	Maxw. numerical
D	0.22	0.22
D-NBI	73.88	73.58
Electrons	25.90	26.21

Resolution used for $\chi: N_{v_{\|}}=100$ and $N_{v_{\perp}}=50$

Bi-Maxwellian distribution

$$
f_{\mathrm{D}}\left(v_{\|}, v_{\perp}\right)=(2 \pi)^{-3 / 2}\left(v_{\mathrm{th}, \|} v_{\mathrm{th}, \perp}^{2}\right)^{-1} \exp \left[-\left(v_{\|} / v_{\mathrm{th}, \|}\right)^{2}-\left(v_{\perp} / v_{\mathrm{th}, \perp}\right)^{2}\right]
$$

with $v_{\text {th, } \|}=\sqrt{2 C_{\|} T(\psi) / m_{\mathrm{D}}}, v_{\text {th }, \perp}=\sqrt{2 C_{\perp} T(\psi) / m_{\mathrm{D}}}$, with constants $C_{\|}$and C_{\perp}

- For $C_{\perp}=1$ and $C_{\|}=\{.5,1 ., 3 ., 5\},. P_{\mathrm{D}-\mathrm{NBI}}$, varied by less than 1%
- Opposite behavior w.r.t. the IC minority heating regime
- however, for small (large) $C_{\|}$, the absorption profile is localized to the resonant layers (significantly broadened radially), as found in the IC minority heating regime
- For $C_{\|}=1$ and $C_{\perp}=\{.5,1 ., 3 ., 5$.$\} , the corresponding P_{\mathrm{D}-\mathrm{NBI}}=\{70.06,73.56,62.84,48.48\}$

Slowing-down distribution

$$
f_{\mathrm{D}}\left(v_{\|}, v_{\perp}\right)=\left\{\begin{array}{ll}
\frac{A}{v_{\mathrm{c}}^{3}} \frac{1}{1+\left(v / v_{\mathrm{c}}\right)^{3}} & \text { for } v<v_{\mathrm{m}}, \\
0 & \text { for } v>v_{\mathrm{m}}
\end{array} \quad v_{\mathrm{m}} \equiv \sqrt{2 E_{\mathrm{D}-\mathrm{NBI}} / m_{\mathrm{D}}}\right.
$$

$$
A=3 /\left[4 \pi \ln \left(1+\delta^{-3}\right)\right], \quad \delta \equiv \frac{v_{\mathrm{c}}}{v_{\mathrm{m}}}, \quad v_{\mathrm{c}}=3 \sqrt{\pi}\left(m_{\mathrm{e}} / m_{\mathrm{D}}\right) Z_{\mathrm{eff}} v_{\mathrm{th}}^{3}, \quad Z_{\mathrm{eff}} \equiv \sum_{\mathrm{ions}} \frac{Z_{\mathrm{i}}^{2}}{A_{\mathrm{i}}} \frac{n_{\mathrm{i}}}{n_{\mathrm{e}}}
$$

For $Z_{\text {eff }}=2$ and $E_{\mathrm{D}-\mathrm{NBI}}=30,60,90,120 \mathrm{keV} \Longrightarrow P_{\mathrm{D}-\mathrm{NBI}}=\{77.84 \%, 75.85 \%, 70.97 \%, 64.71 \%\}$

- Similar behavior when varied C_{\perp} in the bi-Maxwellian case
- Fast ions absorption, in fact, should decrease with something like $T_{\text {fast ions }}^{-3 / 2}$

■ This is due to the behavior of the function $f(\lambda)=\lambda I_{n} e^{-\lambda}$, which reached a maximum value at $\lambda=n^{2} / 3$. For large $\lambda, f(\lambda) \propto \lambda^{-3 / 2}$ [See Stix's book \& Ono, PoP 1995]

Conclusions

- Non-Maxwellian extension of TORIC in minority heating regime reproduces previous simulations
- Excellent agreement of the 2D electric field and in terms of absorbed power
- Implementation of the full hot dielectric tensor reproduces the analytic Maxwellian case
- Non-Maxwellian extension of TORIC in HHFW regime reproduces previous simulations
- Excellent agreement of the 2D electric field and in terms of absorbed power
- For bi-Maxwellian distribution found two different behaviors:
- for IC minority heating regime, the absorbed power at the H fundamental is insensitive to variations in T_{\perp}, but varies with changes in $T_{\|}$
- for HHFW heating regime, the fast ions absorbed power is insensitive to variations in $T_{\|}$, but varies with changes in T_{\perp}
- however, absorption profile varies with changes in $T_{\|}$
- For slowing down distribution in the HHFW heating regime, the fast ions absorbed power varies with changes in $E_{\text {NBI }}$
$-P_{\mathrm{D}-\mathrm{NBI}}$ decreases with increasing E_{NBI}
\square similar behavior found at large T_{\perp} in the bi-Maxwellian case

