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The National Spherical Torus Experiment Upgrade (NSTX-U)
will Enable New Fast lon Physics Study

Previous New
Center-stack center—stack > New center column will double toroidal magnetic field

and plasma current

— Prompt loss of existing NBI Is expected to decrease
because of smaller gyro-radius and higher current

» Second neutral beam injection (NBI) system will double

heating power and increases flexibility and neutral beam

driven current efficiency

— Fast ion profile can be varied from peaked profile to
relatively broad profile, thus changing fast ion driven
Instabilities

— Good fast-ion confinement is essential to achieve the
anticipated improvements in performance
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J. Menard N
Nucl. Fusion 2012

» A “sanity check” experiment is planned to characterize
the fast 1on confinement and fast ion distribution
produced by the new and existing NBI.

PresentNBI | New 2" NBI
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A Comprehensive Set of Fast lon Diagnostics on NSTX-U

» Neutron detectors
dominated by beam-plasma reactions, volume integrated

» Fast-lon D-alpha (FIDA) spectrometers
sensitive to a swath in velocity space, spatial profile

» Solid State Neutral Particle Analyzer (SSNPA) array
very localized in pitch angle range, spatial profile, fast time resolution

» Scintillator-based Fast Loss lon Probe (sFLIP)
lost fast ions, narrow in pitch angle

» Fusion product profile array
strongly weighted toward high energy fast ions
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New SSNPA System Views a Large Range of Plasma &
Distinguishes Response from Passing & Trapped Fast lons

r-SSNPA
Bay L

_ “ VoY, ~ = t-SSNPA at Bay |

i N 16 tangential views; passing fast ions
r-SSNPA at Bay L
16 radial views; trapped fast ions
P-SSNPA at Bay B

16 reference views; monitor passive
[ contrlbutlon near the plasma edqe

SSNPA measures charge exchange fast ions
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D. Liu Rev. Sci. Instrum 2014
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Design Criteria of SSNPA System

Reentrant at Bay L and Bay B for desired field of view

Stacked arrays with different foil thickness for coarse energy resolution

v V V¥V

Noise minimization

Amplifier is very close to detectors.
= “Blind” detector monitors EM noise.
= Low pass filter suppresses high frequency noise.

» Shutter protects detectors during glow discharges and lithium dropping

experiments.

» Active cooling to protect detectors during bake out.
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One Example: Expanded View of t-SSNPA Subsystem at Bay |

Front cover with slits 6” flange with electrical feedthroughs
\ Pinhole chamber  Amplifiers

Rotary motion feedthrough

Aperture rail
Shutter
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New SSNPA System is Ready for Plasma Operation
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D-tacq digitizer
= Vacuum interfaces and detectors are installed

= Electronics have been tested on bench

& = Data acquisition system is being tested.

Vacuum interfaces with detectors installed
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New SSNPA System Aims at Measuring Fast lon Density
Fluctuation up to 150 kHz

Gain
= Bandwidth of amplifier is
SOV ~150kHz at gain of 5x10°V/A
; - - = Low-pass filters suppress high
*""H?++++++++++++++ frequency noise.

= Low noise (<5mV) during on-
Phase bench tests.
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New SSNPA System will also Obtain Coarse Energy
Information
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Directly Deposited Filters Block Stray Photons
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» Directly deposited filters are more robust and reliable than
free-standing foils

» High Z filter is directly deposited on detectors to block visible
light and soft x-ray
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FIDA is an Application of Charge Exchange
Recombination Spectroscopy

Photon

Radiates - Fast neutral
cz;\ 7
AV

. ) ) .
h Flasma Collision
Charge

:L;jlﬁt @' Exchange

W. W. Heidbrink, Rev. Sci. Instrum. 81
(2010) 10D727

Injected
Neutral

J—

The fast ion exchanges an
electron with an injected neutral

Neutrals in the n=3 state relax to
an equilibrium population; some
radiate

The Doppler shift of the emitted
photon depends on a component
of the fast-ion velocity
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Two Sets of FIDA Diagnhostics on NSTX-U

Plan view Elevation of v-FIDA
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= Vertical and tangential FIDA Diagnostics consist of two sub- [ |T==pF_ -
systems g i
- spectrometer-FIDA, full D, spectrum , 16 channels l | I| | e
R=0.86-1.66m, 100Hz V-FIDA: M. Podesta, Rev. Sci. Instrum 2008

- band-pass filter-FIDA, 3 channels at R=1.0, 1.2, 1.4m, 50kHz  T-FIDA: A. Bortolon, Rev. Sci. Instrum 2010
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v-FIDA and T-FIDA Systems Separate the Response of
Trapped and Passing Fast lons

S = [[WF,dEdP
Vertical FIDA 1OF FIDA . .

= most sensitive to trapped particles F
é 00f
-05F

Tangential FIDA e —.

= most sensitive to passing particles

" -FIDA

(b) Tangential
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A. Bortolon, Rev. Sci. Instrum 2010
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Fast lon Distribution from NBI Line #1 and #2 is Simulated
with TRANSP

New 279 NBI Present NBI

Input plasma profiles for TRANSP simulation
R, ,=110,120,130cm R, ,,=50,60,70cm

0.2 0.4 0.6 0.8 1.0
sqrt (toroidal flux)

1C (Ry;,=50cm), 1B (R,,=60cm), 1A (R.,,=70cm)
2C (R(;,=110cm), 2B (R,;=120cm), 2A (R,,=130cm)
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Fast lon Density Profile Varies with Neutral Beam Source

More perpendicular = More Tangential
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Passing fast ions spend more time at
high field side due to small major radius
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Fast lon Pitch Angle Varies with Neutral Beam Source

NB Line #1 (more perpendicular)
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Fast lon Distribution in Constants-of-motion Space Varies
with Neutral Beam Source

NB Line #1 (more perpendicular )
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FIDA Spatial Profile/Magnitude is Expected to Vary with
Different Neutral Beam Source

v-FIDA (most sensitive to trapped particles)
Aint= [650 5, 653 8]nm

4f

v-FIDA light intensity [x 108 Ph/(s2 m sr)]
N

80 90 100 110 120 130 140
Rmaj [cm]

t-FIDA light intensity [x 108 Ph/(s2 m sr)]

t-FIDA (most sensitive to passing particles)
),nt [650 5, 653 8]nm

80 90 100 110 120 130 140
Rmaj [cm]

When switching from the existing NBI line to new NBI line,
= Significant magnitude difference is expected for both v-FIDA and t-FIDA systems.
= Significant profile difference is expected for v-FIDA

Note: NB source 1B provides beam neutrals for FIDA systems.
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SSNPA Profile is Expected to be Different When Switching
from Neutral Beam Line #1 to #2

r-SSNPA (mostly sensitive to trapped particles) t-SSNPA (mostly sensitive to passing particles)
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Channel [from inboard to Outboard] Channel from inborad to outboard

When switching from the existing NBI line to new NBI line,

= Significant magnitude difference is expected for both r-SSNPA and t-SSNPA systems.
= Significant profile difference is expected for t-SSNPA
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Shine-through Loss Dominates for the New NBI

Nuetral beam source

0aglC 1B 1A 2C_ 2B 2A

0.25 Existing NBI (R,,=50,60,70cm)
c o0 shine-through 1C: mainly prompt loss
= total loss 1B and 1A: charge-exchange loss
©
*=0.15
§ 010 New NBI (R,,=110,120,130c¢m)
I Charge'imhange 2C/2B/2A: shine-through loss
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Plan of Beam lon Confinement Experiment

W. W. Heidbrink, Nucl Fu3|on 2003

Objective i3

PINJ (IVIW) E

» Characterize beam ion confinement from NBI line #1 & #2 :l |°| I.*l :' ;‘\l |'| I

11 | | R |

» Investigate the dependence of beam ion confinement on of | | Y | N

beam source, injection energy and plasma current. | ' |
NEUTRONS (1012/s) A

> Compare with the classical theory (NUBEAM, FIDAsim) Xt f\\ T l

0.8+ \\gj J\‘\

Approach 0 MJL \\ '“*w “*‘w ,

> Inject short (~20mMs<tyqyingdown) NEULral beam pulses to check - i ng <ov- | |
neutron build-up and decay rate. i ~ !

Exponential decayi
as beam ions thern

> Inject relatively long (~90ms>ty,,ingaow) NEUtral beam pulsest
to get stationary beam ion slowing-down distribution.

nalize

NEUTRONS (1

» E;,=69keV vs. 90keV for all six neutral beam sources;
1,=0.7MA vs. 0.55MA at B=0.65T

> Monitor fast ion losses with sFLIP in all scenarios.

v by b b s
0.23 0.24 0.25 0.26 0.27
TIME (s)
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Summary

» Itis important to check beam ion confinement on NSTX-U and gain confidence
in utilizing the 2" NBI as a tool to drive current, control g or pressure profile.

» A comprehensive set of fast ion diagnostics will be used to study the fast ion
confinement. Diagnostics are nearly ready for experiments.

» Modelling with TRANSP and FIDAsiIm suggests that FIDA and SSNPA profile
or signal magnitude will change with neutral beam source.

» Experimental plan and data analysis tools for beam ion confinement on NSTX-U
have been developed.
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