

Preparation for a Beam Ion Confinement Experiment on NSTX-U

D. Liu, W. W. Heidbrink, G. Z. Hao (UCI) M. Podestà, D.S. Darrow, E. Fredrickson, S. S. Medley (PPPL)

> 57th Annual Meeting of the APS Division of Plasma Physics Savannah, GA November 16-20, 2015

The National Spherical Torus Experiment Upgrade (NSTX-U) will Enable New Fast Ion Physics Study

Previous

- center-stack center-stack > New center column will double toroidal magnetic field and plasma current
 - Prompt loss of existing NBI is expected to decrease because of smaller gyro-radius and higher current
 - Second neutral beam injection (NBI) system will double heating power and increases flexibility and neutral beam driven current efficiency
 - Fast ion profile can be varied from peaked profile to relatively broad profile, thus changing fast ion driven instabilities
 - Good fast-ion confinement is essential to achieve the anticipated improvements in performance
 - A "sanity check" experiment is planned to characterize the fast ion confinement and fast ion distribution produced by the new and existing NBI.

A Comprehensive Set of Fast Ion Diagnostics on NSTX-U

Neutron detectors

dominated by beam-plasma reactions, volume integrated

- Fast-Ion D-alpha (FIDA) spectrometers sensitive to a swath in velocity space, spatial profile
- Solid State Neutral Particle Analyzer (SSNPA) array very localized in pitch angle range, spatial profile, fast time resolution
- Scintillator-based Fast Loss Ion Probe (sFLIP) lost fast ions, narrow in pitch angle
- Fusion product profile array strongly weighted toward high energy fast ions

New SSNPA System Views a Large Range of Plasma & Distinguishes Response from Passing & Trapped Fast lons

Design Criteria of SSNPA System

- Reentrant at Bay L and Bay B for desired field of view
- Stacked arrays with different foil thickness for coarse energy resolution
- Noise minimization
- Amplifier is very close to detectors.
- "Blind" detector monitors EM noise.
- Low pass filter suppresses high frequency noise.
- Shutter protects detectors during glow discharges and lithium dropping experiments.
- Active cooling to protect detectors during bake out.

One Example: Expanded View of t-SSNPA Subsystem at Bay I

New SSNPA System is Ready for Plasma Operation

🔘 NSTX-U

New SSNPA System Aims at Measuring Fast Ion Density Fluctuation up to 150 kHz

- Bandwidth of amplifier is ~150kHz at gain of 5x10⁵V/A
- Low-pass filters suppress high frequency noise.
- Low noise (<5mV) during onbench tests.

New SSNPA System will also Obtain Coarse Energy Information

Directly Deposited Filters Block Stray Photons

- Directly deposited filters are more robust and reliable than free-standing foils
- High Z filter is directly deposited on detectors to block visible light and soft x-ray

FIDA is an Application of Charge Exchange Recombination Spectroscopy

W. W. Heidbrink, Rev. Sci. Instrum. **81** (2010) 10D727

- The fast ion exchanges an electron with an injected neutral
- Neutrals in the n=3 state relax to an equilibrium population; some radiate
- The Doppler shift of the emitted photon depends on a component of the fast-ion velocity

Two Sets of FIDA Diagnostics on NSTX-U

- Vertical and tangential FIDA Diagnostics consist of two subsystems
 - spectrometer-FIDA, full D_{α} spectrum , 16 channels R=0.86-1.66m, 100Hz
 - band-pass filter-FIDA, 3 channels at R=1.0, 1.2, 1.4m, 50kHz

V-FIDA: M. Podesta, Rev. Sci. Instrum 2008 T-FIDA: A. Bortolon, Rev. Sci. Instrum 2010

v-FIDA and T-FIDA Systems Separate the Response of Trapped and Passing Fast lons

Vertical FIDA

most sensitive to trapped particles

Tangential FIDA

most sensitive to passing particles

A. Bortolon, Rev. Sci. Instrum 2010

Fast Ion Distribution from NBI Line #1 and #2 is Simulated with TRANSP

1C (R_{tan} =50cm), 1B (R_{tan} =60cm), 1A (R_{tan} =70cm) 2C (R_{tan} =110cm), 2B (R_{tan} =120cm), 2A (R_{tan} =130cm)

Fast Ion Density Profile Varies with Neutral Beam Source

Fast Ion Pitch Angle Varies with Neutral Beam Source

Fast Ion Distribution in Constants-of-motion Space Varies with Neutral Beam Source

FIDA Spatial Profile/Magnitude is Expected to Vary with Different Neutral Beam Source

When switching from the existing NBI line to new NBI line,

- Significant magnitude difference is expected for both v-FIDA and t-FIDA systems.
- Significant profile difference is expected for v-FIDA

Note: NB source 1B provides beam neutrals for FIDA systems.

SSNPA Profile is Expected to be Different When Switching from Neutral Beam Line #1 to #2

When switching from the existing NBI line to new NBI line,

- Significant magnitude difference is expected for both r-SSNPA and t-SSNPA systems.
- Significant profile difference is expected for t-SSNPA

Shine-through Loss Dominates for the New NBI

Existing NBI (R_{tan}=50,60,70cm)

1C: mainly prompt loss1B and 1A: charge-exchange loss

New NBI (R_{tan}=110,120,130cm) 2C/2B/2A: shine-through loss

Plan of Beam Ion Confinement Experiment

Summary

- ➤ It is important to check beam ion confinement on NSTX-U and gain confidence in utilizing the 2nd NBI as a tool to drive current, control q or pressure profile.
- A comprehensive set of fast ion diagnostics will be used to study the fast ion confinement. Diagnostics are nearly ready for experiments.
- Modelling with TRANSP and FIDAsim suggests that FIDA and SSNPA profile or signal magnitude will change with neutral beam source.
- Experimental plan and data analysis tools for beam ion confinement on NSTX-U have been developed.