

Experimental investigation of the physics controlling core-localized compressional and global Alfvén eigenmode spectra, structure, and amplitude in NSTX-U

> S. Tang, UCLA N.A. Crocker, T.A. Carter, E.D. Fredrickson, N.N. Gorelenkov, W. Guttenfelder

> 57th Annual Meeting of the APS Division of Plasma Physics Savannah, Georgia Nov 16-20, 2015

Overview

- High frequency compressional (CAE) and global (GAE) Alfvén eigenmodes are leading candidates to explain core anomalous electron heat transport with increasing toroidal field and beam power
- No validated model for predicting the spectra, structure, and amplitude of these eigenmodes
 - Motivates analysis across wide range of plasma parameters to establish scaling laws and threshold studies
- A database across many shots is compiled for the purpose of better understanding the CAE and GAE activity
- Preliminary analysis shows mode activity increases with beam power as expected

Anomalous electron transport correlated with high frequency Alfvén activity

- Beam-heated spherical torus plasmas feature high frequency Alfvén eigenmodes (AE) (f > ~ 400 kHz): Compressional (CAE) & Global (GAE)
- CAEs & GAEs correlate with enhanced core χ_e in NSTX
- Resonant interaction of multiple modes with e⁻ guiding center orbits proposed to stochastize orbits, enhancing thermal transport

[D. Stutman et al., PRL 102 115002 (2009)]

CAEs and GAEs driven by Doppler-shifted cyclotron resonance with beam heating ions

• CAEs (compressional) and GAEs (global) are Alfvén eigenmodes, where approximately

 $\omega^2 = k^2 V_A^2 \text{ (CAE)}$ $\omega^2 = k_{\parallel}^2 V_A^2 \text{ (GAE)}$

- For cyclotron resonance the parallel resonance condition is: $\omega k_{||}v_{B||} = \omega_{CB}$
- The perpendicular resonance condition requires finite orbit widths, e.g.:
 - -CAEs: $1 < k_{\perp} \rho_{\perp b} < 2$
 - -GAES: $2 < k_{\perp} \rho_{\perp b} < 4$
 - $-k_{\perp}\rho_{\perp b}$ is stabilizing in some ranges and destabilizing in others \rightarrow anisotropy important to instability

[N.N. Gorelenkov et. al., N.F. 43 (2003) 228-223]

Broad survey of mode activity performed

- Coherent modes identified in CAE/GAE frequency range in broad range of shots

 Initial rule of thumb: f > 200kHz based on observation
- Edge magnetic coils yield mode activity measurements for each discharge
 - Frequency, toroidal mode number, amplitude

Mode activity characterized using edge B-dot array

 δb measured by a toroidally distributed array of poloidal magnetic field sensing coils (Mirnov coils)

-10 coils

 Statistical analysis yields frequency, toroidal mode number, and amplitude

Modes identified by testing quality of fit to single toroidal mode number

• For each *t*, *f* find best fit *n* which minimizes:

$$\chi^{2} \equiv 1 - \left| \sum_{\forall \phi} \delta b e^{-in\phi} \right|^{2} / \left(N_{\phi} \sum_{\forall \phi} |\delta b|^{2} \right)$$

– Low chi-square $\rightarrow \delta b(t, f)$ dominated by single toroidal mode

• Coils are distributed toroidally with smallest coil spacing of $\varphi = 10^{\circ} \rightarrow$ can resolve $|n| \le 18$ ($N_{\varphi} = 10$)

Isolating CAEs/GAEs from noise important for fidelity of data set

- In choosing modes we apply a mask of $\chi^2 < 0.5$
 - Initial tests show that most mode power is concentrated in points that pass this mask
- Modes identified as *n* = 0 are excluded
 - Coherent noise produces spurious n = 0 modes
- Further work needed to refine noise isolation process

Existing database of beam-heated shots extended to include CAE/GAE mode activity

- An existing database compiled by Fredrickson et.al. expanded upon
 - 173 total TRANSP shots and 1051 total time slices
 - Analysis done on 50ms intervals
 - TRANSP runs calculated assuming no anomalous fast ion diffusion
- Extended database to include calculations of total CAE/GAE mode power, frequency, mode number
 Initial application of this analysis is to extend the database

[E.D. Fredrickson, N.F. 54 (2014) 093007]

Total mode power increases with beam power

- Correlation observed between total mode power (|δb|²) and TRANSP calculated absorbed beam power
- Consistent with excitation of CAEs and GAEs by Doppler-shifted cyclotron resonance with beam ions

$|\delta b|^2$ correlates with T_e at high beam power

- Total mode power found to correlate with temperature at high beam power
- Further investigation required
 - Cause of correlation unknown

- $\rm T_e$ may be important for its role in Landau damping and anisotropy of beam ion distribution

Electron energy density profile flattens with increased mode power

- U_e flattening factor approximated by volume averaged electron energy density (U_e) over peak U_e : $U_e(0)$
- Correlation consistent with theory of anomalous electron transport by CAE/GAEs
 - TRANSP calculations assumed no anomalous fast ion diffusion
- Further analysis needed to explore implications of this result

Next steps

- Potential for investigating scaling laws and threshold studies
- Expanding database to include more parameters to understand physics controlling CAE/GAE activity
- Refinement of analysis technique
 - Implement multi-mode fit
 - Improve noise isolation method

Summary

- Evidence of anomalous electron transport motivates research on CAE/GAEs and their effect on transport
- Need to develop a predictive capability for these modes in order to understand the physics controlling them
- Initial results show a correlation between mode power and beam power
 - Consistent with existing theory that CAE/GAEs are excited by Doppler-shifted cyclotron resonance with beam ions
- Other results obtained that need further investigation
 - Mode power correlates with T_e at high beam power
 - Electron energy density profile flattens with mode power