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• NCC is a set of internal, off-midplane coils under 

consideration for NSTX-U 

– Attached to passive plates (max 48 locations) 

– Intended to increase spectral flexibility for, e.g., ELM control 

studies 

NCC: Non-axisymmetric Control Coil 
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Effect of NCC on ballooning stability studied 
with VMEC and COBRA 

• Analysis of experimental cases has shown that 
ballooning stability can be degraded by 3D fields 
– Canik NF ‘12, Chapman PoP ‘13; VMEC/COBRA 

– Bird & Hegna NF ’13; Analytic theory based on local 3D 
equilibrium (Miller+RMP) 

• 3D MHD equilibrium calculated with VMEC 
– Minimizes total (magnetic+thermal) plasma energy 

– 3D geometries with no restriction on symmetry 

– Mainly used for stellarators, increasingly for tokamaks 

– Hirshman, CPC ‘86 

• Ballooning stability calculated with COBRA 
– Infinite-n ideal stability of VMEC 3D equilibria 

– Sanchez, CPC ‘01 
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• Tables built of B-fields from coils, 
including  NSTXU PF, NSTX TF, 
and NCC coils 
– Current in each coil type is input to 

VMEC 

– Need to do this to run VMEC in free-
boundary mode when we turn on 3D 
fields 

• Pressure and safety factor profiles 
read from Isolver-generated g-file, 
fitted with polynomials and fed into 
VMEC input 
– Truncated at psiN=0.995, since VMEC 

can’t go all the way to the X-pt 

• Free-boundary VMEC boundary, B-
fields agree with 2D equilibrium 

 

 

 

 

Projected 2D equilibrium transferred to 
VMEC 
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• Ballooning analysis shown in 
upper plot done with ‘ball’ module 
of GS2 
– Based on g-file, not VMEC 

– Edge pressure gradient is just below 
ballooning onset 

• Balloon analysis shown in lower 
plot done with COBRA 
– Based on VMEC (2D only so far) 

– Nominal equilibrium (transferred from 
Isolver) is stable 

• Increasing pressure in VMEC 
causes small unstable region at 
edge 
– Note that global equilibrium is changing 

(e.g., Shafranov shift) 

 

2D equilibrium is ballooning stable, but close 
to threshold in pressure gradient 
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• Full NCC considered so far: 12 U+L 

– The VMEC runs shown here are for n=3 applied, even parity 

• VMEC rerun with NCC turned on (1kAt), p/q profiles 

unchanged 

– Yields nonaxisymmetric surface displacements of order ~1 cm 

 

Fields from NCC added to generate 3D 
VMEC equilibrium 
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• Large edge region is 

unstable with NCC turned 

on 

• Much larger effect than 

increasing pressure in 2D 

equilibrium 

• Much larger than effects 

of RWM coils 

– Even with lower coil current 

 

 

 

COBRA indicates that NCC can strongly 
affect ballooning stability 
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• Profiles near chosen radius 
modified to change the shear 
and pressure gradient locally, 
without large changing to the 
global equilibrium 
– Added two tanh functions with 

opposite sign and different 
widths to q/p profs 

– Pressure and q far from and 
exactly at that surface are 
unchanged 

 

• New profiles put into VMEC 
input for VMEC/COBRA calcs 
– Fixed boundary VMECs this 

time, using boundary from 
original free boundary run 
without altered profiles 

– ~100 new cases run to scan 
shat/p’ 

 

Shear, pressure gradient varied in large set 
of VMEC equilibria 



9 APS-DPP, NCC ballooning stability, Canik, 11/17/15 

• COBRA/VMEC agree well with 
BALL code in axisymmetric case 
– Red contour is stability boundary from 

ball, based on g-file 

– Color contours are from shear/P’ scans 
using VMEC/COBRA 

• Shift in stability boundary when 
NCC fields are applied is clear 
– BALL boundary is unchanged-shown 

for reference 

– Boundary moves both in shear and 
pressure gradient 

– In this case, nominal profiles (white 
plus sign) goes from stable to unstable 
(consistent with previous slides) 

 

 

NCC moves the stability boundary at s=0.8 
(N=0.903) 

2D 

NCC n=3 1kAt 

BALL 
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• Shear/pressure 

gradient at the 

stability boundary 

– Each is a 1D scan 

around operating point 

 

 

• Change in the critical 

values due to NCC 

Stability boundary moves by ~10-20% in 
shear and pressure gradient with NCC on 



11 APS-DPP, NCC ballooning stability, Canik, 11/17/15 

• 6 coils each in U and L rows, but staggered 

– n=3 always considered here 

– Two helicities considered, depending on up-down phasing 

– One is dominantly resonant (more-so than full NCC), the 

other non 

 

Partial NCC implemented in new VMEC 
runs 
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• With 1kAt, partial NCC has 
small impact on ballooning 
– Small, positive growth rates 

very near edge 

• Increasing to 2kAt gives 
larger change in gamma 
– Instability still restricted to 
N>~0.95 

– More like RWM coils than full 
NCC 

– Not much difference between 
two helicities 

• Related to kink-resonant 
perturbation? 
– Full NCC appears strongest 

 

Impact on ballooning stability is more 
modest than full NCC 
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• Local ideal ballooning stability shows toroidal localization 

– Will n=3 structure carry over to global modes? 

• State-of-the-art physics picture: edge transport dominated by KBM 

– At least in pedestal, some evidence in near SOL too 

– Will cross-field heat fluxes show n=3 dependence? 

 

 

Impact on edge transport: growth rate 
depends on toroidal angle when field is 3D 

VMEC+COBRA: NSTXU NCC  Analytic: Miller+RMP near q=3 

Bird & Hegna, NF ‘13 
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• Imagine resonant fields are perfectly shielded everywhere 

• But 3D fields affect turbulence so that time-average fluxes 

are 3D 

 

 

How would toroidal modulation of radial heat 
flux affect SOL/divertor? 

Top-down 

view 

We already think transport is 

ballooning-like: Stronger on LFS 
What if it’s also toroidally 

asymmetric? 
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• Imagine radial transport puts heat into 
SOL at the OMP with an n=3 
dependence 

• Parallel transport then carries heat to 
divertor 

• Can model with field line tracing 
– In our picture, field is really 3D, but resonances 

are shielded so effects are relatively small (no 
topology changes) 

– As a start, use 2D field from EFIT only 

• Launch field lines from outer midplane, 
over range of radius and toroidal angle 

• Assign each field line a weight that 
depends on initial toroidal angle 
(represents heat flux) 

• Follow field lines to wall to get spatial 
distribution of weights 

 

Field line tracing used to model effect non-
axisymmetric radial heat flux 

0=1..1.5 

0 = 0 

0 = 0..2 

w=1+tcos(n0) 

 

 

Field line tracing 

w(,,) 
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• Following field lines in 2D field with n=3 weight gives patterns on 
divertor that are the same as 2D+3D field line tracing 
– Spirals due to sheared field 

– 2D+3D field line tracing often show to give patterns in agreement with 
experiment 
 Ahn NF ‘10, Shafer NF ‘12, Kirk PRL ‘12 

 

Toroidally weighted field lines make spiraling 
patterns on divertor 

2D field + n=3 weighted FLT 2D field + 3D vacuum field 
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• Radial decay added to 
weight to reflect SOL q 

• Lobes evident, 
qualitatively very similar to 
FLT using vacuum RMP 
field 

• But in this picture, there’s 
no topology change 
– Lobes don’t indicate 

magnetic field structure, 
they’re due to n=3 
dependence of radial 
transport 

 

Viewed in R-Z plane, lobe structures near X-
point are clear 
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• Method: field lines traced, with spatial diffusion added to model transport 
– In this case magnetic field used in tracing is 2D EFIT 

– Technique used to estimate heat flux patterns in stellarators (Lore IEEE TPS ‘14) 

• Field line diffusion is given toroidal and poloidal dependence 
– Localized to 20o poloidally at the outer midplane 

– n=3 sinusoidal toroidal modulation added 

• Could also implement in EMC3-EIRENE to calculate n, T, fluxes 

 

Transport simulations based on diffusing 
field lines also show divertor striations 

Field line strike density 

Inner target 

Field line strike density 

Outer target 
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• Generally attributed to ‘separatrix splitting’ 
– Under vacuum approximation, 3D fields generate tangles that can connect 

hot core plasma to wall 

– Fact that lobes are measured often taken of evidence that RMP has 
penetrated at least somewhat 

• The further out in radius fields are screened, the more the radial 
extent of lobes is reduced (Cahyna, JNM ‘11) 
– Ideal response all the way to separatrix should nearly eliminate them 

(Cahyna, IAEA ‘12) 

– Could transport picture be more consistent with lack of edge Te flattening? 

 

 

Vacuum / Partial Screening / Some Plasma Response  
Typically Used to Describe Measured Lobes/Striations 

NSTX: Ahn PPCF 2014 DIII-D : Shafer NF 2012 MAST: Kirk PRL 2012 

139997, n=3 



20 APS-DPP, NCC ballooning stability, Canik, 11/17/15 

• VMEC and COBRA calculations show strong 

degradation of ballooning stability possible 

– Strong increase of growth rates near marginal stabilty 

– ~10-20% change in stability boundary 

 

• Toroidal localization of instabilities could result in 

striations in divertor fluxes 

– Asymmetric loading of fieldlines results in lobes/strike point 

splitting even with perfeclty axisymmetric B-field 

– Lack of stochasticity more consistent with pedestal 

measurements? 

Conclusions: NCC can have a large impact 
on edge stability and transport 


