

Heat Flux and Scape-off Layer Wdith Scaling in NSTX and NSTX-U

TK Gray, ORNL

J-W Ahn (ORNL), K Gan (U Tennesse - Knoxville), MA Jaworski (PPPL), R Maingi (PPPL), AG McLean (LLNL), VA Soukhanovskii (LLNL) and the NSTX-U Team

Abstract

While it has been shown experimentally that the inter-ELM scrape-off layer width, λ_{α} in tokamaks scales as I_{p}^{-1} , the underlying physical mechanism for this scaling is not yet understood. Additionally, the physics behind the broadening of the heat flux profile during detachment, described by the S parameter in the so-called Eich fitting function [Eich NF 2013], is just beginning to be explored. During the final run campaigns of NSTX, it was shown experimentally that the addition of evaporative lithium wall coatings reduced λ_{q} and S and correlated with a reduction in overall divertor pressure. Conversely during detachment experiments with CD₄ injection, while divertor total pressure increased during CD 4 injection, both λ_{α} and S increased correspondingly. This is in qualitative agreement with measurements made on other tokamaks and shows a clear scaling of λ_q and S with upstream density, which is used as a proxy for divertor density. Expected behavior and preliminary results from NSTX-U will also be presented.

This work was supported by DoE Contracts: DE-AC05-00OR22725, DE-AC52-07NA27344 and DE-AC02-09CH11466.

Motivation

- Mitigating divertor heat flux to acceptable material limits is one of the biggest challenges facing fusion
- This is an even greater challenge for the spherical torus due to its compact size
- Projected NSTX-U characteristics:
 - $I_p \le 2$ MA, $P_{NBI} \le 12$ MW, 5 second pulse
 - q_{pk, Inter-ELM} > 20 MW/m² [TK Gray, JNM 2011]
 - Assuming double null, $f_{exp} \sim 30$ and $f_{rad} \sim 0.5$
 - Moving to transition from graphite to high-Z PFCs (TZM Mo)
- Active program on NSTX-U to mitigate extreme heat fluxes
 - Snowflake/X-divertor
 - Lithium

NSTX-U

CAK RIDGE

Overview of NSTX (2009-2010)

IN I SITT

	NSTX	NSTX-U*
Plasma Current, Ip	≤ 1.2 MA	≤ 2 <i>MA</i>
Magnetic Field, Bt	≤ 0.55 T	≤ 1 T
Auxiliary Heating:		
Neutral Beam Injection	6 MW	12 MW
RF	6 MW	6 MW
Central Temperature	1 — 6 keV	???
Central Density	$\leq 1.2(10)^{20} m^{-3}$???

Available NSTX Diagnostics

 Lower Divertor IR cameras 2 IR and Visible Cameras Far SOL bolometer - 30 Hz IRTV sensitive to 6 - 13 µm - 2010: Fast IR camera ▶ 1.6 — 6.7 kHz equipped with dual band optics (m) Z ISP and PFR Filterscopes bolometers - D_α, C II, Li II, O II - wide FOV of the divertor -1 Flush mounted divertor Langmuir probes Langmuir Probes Divertor and midplane -2 Penning Gauges · · · | · · <u>. . .</u> penning gauges

💥 OAK RIDGE

NSTX-U

1.0

R(m)

0.0

0.5

1.5

2.0

strong inverse I_p dependence 2.5 in attached, H-mode plasmas

• True for both integral width $\exists z$ as well as λ_q in the Diffusive- \checkmark Gaussian description

Previous studies (no lithium)

on NSTX showed λ_{α} has

[TK Gray, JNM 2011]

• Predicts $\lambda_q \sim 2$ —3 mm for NSTX-U @ 2 MA

NSTX-U

- Addition of Li has been shown to further decrease λ_q [TK Gray, NF 2014]

 $\lambda_q^{mid} = 0.91 I_p^{-1.62}$

Previous Heat Flux Scaling Experiments on NSTX

💥 OAK RIDGE

National Laboratory

Controlled Li Introduction Experiment (2009)

- Lithium is deposited on the lower divertor prior to each discharge via 2 Li ovens called LiTERs
 - Located toroidally 130° apart
 - Li coverage in the divertor has a gaussian distribution
- Amount of Li deposited incrementally increased over the course of 2 days
- Similar experiment was performed in 2008 in a low δ discharge shape

Introduction of Lithium into NSTX in 2009

- 22 shots used (132540 132569)
 - 8 boronized shots
 - The remaining shots (starting with 132550) have increasing pre-shot Li evaporation
 - I_p = 1 MA, P_{NBI} = 4 6 MW, $\delta \sim 0.7$
- With the addition of Li:
 - ELM frequency was reduced but not completely eliminated
 - Similar stored energies
 - Core P_{rad} increases
 - n_eL decreases at high Li depositions
- IRTV data is single band
 - Quantitative heat flux measurements are unreliable due to addition of Li
 - ELM averaged (30 Hz)

oak Ridge

NSTX-U

- Profile analysis limited to H-mode phase

57th APS-DPP — SOL Width Scaling in NSTX, TK Gray (11.18.2015)

Divertor plasma continually evolves with addition of Lithium

- D_α decreases monotonically indicative of reduced recycling
- Divertor pressure is reduced
- Li II emission increases, but saturates after the initial Li introduction
- Reduction in inter-ELM i_{sat} in far-SOL
 - probe @ r = 50 cm

& Oak Ridge

- r_{OSP} ~ 35 cm
- T_e is similar or slightly higher than the non-lithium reference
 - Classical probe interpretation
 - Error is estimated to be ±5 eV
- O II emission initially increases with the first addition of Li (shot 132550)
 - Returns to pre-lithium levels after several shots

ELM averaged λq and S both decrease with addition of Li

- Decrease in λ_q with Li has been previously reported [TK Gray, JNM 2011]
 - Scatter in the data due to increasing n_eL during each shot
- Unclear whether the decrease S is due to either:
 - Decrease in collisionality

Decrease in recycling

Simulations with SOLT qualitatively describe the observed contraction of λq with Li

- SOLT is a fluid turbulence code
 Density diffusion D_n used to match to simulation results to experimental power crossing the seperatrix
 - D_n is not driving the heat flux
 - it's damping the turbulence which drives the heat flux
- Turbulent (blob) heat transport is weaker for the broader, post-Li profiles
- Weaker turbulence ⇒ less cross-field transport
- Post -Li footprints are smaller than Pre-Li footprints (arrows) at the shot powers (circles)
- Pre/post Li trend qualitatively agrees with experiment

λ_q and S both increase with upstream density

 Rate of change of λ_q w.r.t. f_{GW} is greatly reduced with Li compared to B

🛎 OAK RIDGE

- Rate of change of S w.r.t.
 f_{GW} is similar, perhaps higher, between B and Li discharges
 - Poor linear fit of B data

Divertor Detachment using CD₄ (2010)

- $I_p = 1$ MA, $P_{NBI} = 4$ MW, $\delta \sim 0.7$
- CD₄ was injected in the lower divertor at pre-programmed intervals
- Li wall conditioning (~ 100 mg) was used prior to each shot

Overview of CD₄ Injection Shots

- Reference discharge without CD₄ injection (141523)
- Injection of CD₄ in the divertor leads to a faster rate of rise in core n_eL
- P_{SOL}, W_{MHD} and P_{rad} otherwise similar between shots

- ELMs were initially suppressed since each shot has 100 mg of pre-shot Li evaporation
- However, ELMs return late in the discharges with sufficient divertor gas injection
- No corresponding increase in inter-ELM D_{α} emission
- Expected increase in divertor C II emission with CD4 injection
- Increase in O II emission correlated with rise in C II emission
- Li II emission is unchanged

💥 OAK RIDGE

National Laborat

Evolution of Heat Flux profiles during CD₄ Injection

- Heat flux profiles averaged over 12 ms (20 frames
- Average peak heat flux is reduced 50% with CD4 injection
- Diffusive-Gaussian fits are problematic nearing detachment (t = 0.6 s) as the quality of the IR data is diminished 141523

- Inter-ELM heat flux is reduced with CD4 injection
- But ELMs return due to increased density
- λ_q and S continually increase during reference discharge (141523) due to increasing core density
- λ_q is increased by a factor of 3-4 after CD₄ injection
- S doesn't appear to be affected by gas injection until ~ 100ms after λ_q
- However, analysis of λ_q and S late in the discharge is problematic due to poor quality heat flux data

Conclusions

- Addition of Li evaporative coatings reduces both λ_q and S
- Reduction in λ_q is in qualitative agreement with a reduction in turbulence based on SOLT modeling
- Physics behind the reduction in S with Li is less clear
- λ_q increases x 3-4 with divertor CD₄ injection
- Behavior of S is less clear
 - Increase in S is delayed compared to increase in λ_q
 - Increase in S is observed as detachment is approached and fit quality is diminished

Upcoming NSTX-U Experiments

- SOL Thermal Transport
 - Simultaneous measurement of mid plane SOL and divertor turbulence with BES, GPI, Langmuir probes and fast cameras
- Controlled Li Introduction
 - Similar to 2008 and 2009 experiments
 - First use of dual-band IR camera during Li introduction experiment
- Reference Discharges for high-Z divertor upgrade

NSTX-U Heat Flux Diagnostics

- Lower and Upper divertor views with fast IR camera
 - Dual-band optics available for both **
- Wide-angle IR camera viewing the lower divertor
 - 30 Hz

NSTX-U

- 640x512 pixels, single band
- Additions in FY17:

DAK RIDGE

- Calorimeters in high Z tiles
- Additional IR cameras to cover inner strike points
- Improved core and divertor bolometry for power balance

Request for Reprints