J. Lore², J. Canik², T.W. Morgan¹

¹FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, the Netherlands (on 1 year assignment at PPPL) ²Oak Ridge National Laboratory, USA ³National Institute for Fusion Science, Toki, Japan ⁴Princeton Plasma Physics Laboratory, USA ⁵Institute for Plasma Research, India *g.g.vaneden@differ.nl

ABSTRACT - Measurements of the radiated power in fusion reactors are of

- resistive bolometer and AXUV diode systems

*Work supported by PPPL US-DOE contract DE-AC02-09CH11466

Development of a prototype infrared imaging bolometer for NSTX-U <u>G.G. van Eden^{*1},</u> M.L. Reinke², B.J. Peterson³, T.K. Gray², K. Mukai³, R. Sano³, L. Delgado-Aparicio⁴, M.A. Jaworski⁴, S.N. Pandya⁵, **NSTX-U () PPP** LHP MIFS 57th Annual Meeting of the APS-DPP November 16-20, 2015, Savannah, Georgia

 A_{hol} – area of the bolometer pixel

l_{plasma} – length of sight line through plasma (2.5 m) P_{rad} – total power radiated by plasma (~2 MW)

- of 7.5x2.11 mm Integration along LOS shows
- overlap of channels • Spatial resolution versus signal can be changed later in design and analysis; 4, 3, 2 channels combined shown in plot \rightarrow
- Bolo pixel area: 0.15 cm²

Expected radiation levels from SOLPS simulations (J. Lore):

-0.5

-1.0

TIME RESPONSE TESTING ON BENCHTOP

Motivated by assessing time response limit using a (faster) IR cam and allowing for oneto-one comparison to a resistive bolometer

Foil irradiated by 4mW HeNe laser (λ =635 nm) and arbitrary pulse shape generator

- 2.5 µm Pt foil, irradiated in air (vacuum to be done)
- Power scan: 0.1-4 mW
- Frequency scan: 0.1-150 Hz

SUMMARY AND FUTURE WORK

- IRVB prototype system for NSTX-U tokamak currently in development
- Prototype Designed to provide 1D view of NSTX-U divertor radiation
- IRVB allows for many more detector channels per unit area than resistive bolometer or AXUV systems
- Installation planned early 2016. Acquiring data for upcoming FY16 campaign.

future work:

- Optimization of IRVB time response (laser in vacuum) • Studies of IRVB time response and sensitivity in comparison to
- conventional resistive bolometer systems (ongoing) • Finalizing design for multiple IRVB application for tomographic reconstruction purposes (FY16 NSTX-U run campaign)

¹G.A. Wurden et. al., Rev. Sci. Instr. 68 (1997) ²S.N. Pandya et. al., Rev. Sci. Instr. 85 (2014) ³B.J. Peterson, Rev. Sci. Instr. 71 (2000)