

Parametric studies of next-step spherical tokamaks using high-temperature superconductors* (Poster GP12.00101)

J. Menard, T. Brown, Y. Zhai (PPPL) L. El-Guebaly (UW – Madison)

57th Annual Meeting of the APS-DPP November 16–20, 2015 Savannah, Georgia

*This work supported by the US DOE Contract No. DE-AC02-09CH11466

Possible missions for next-steps

1. Integrate high-performance, steady-state, exhaust

- Divertor test-tokamak DTT Past (& future) PPPL Studies
- 2. Fusion-relevant neutron wall loading
 - \succ $\Gamma_n \sim 1-2MW/m^2$, fluence: $\geq 6MW-yr/m^2$
- 3. Tritium self-sufficiency
 - ➤ Tritium breeding ratio TBR ≥ 1
- 4. Electrical self-sufficiency

Recent / Present PPPL-led Studies

5. Large net electricity generation

> Q_{eng} = P_{electric} / P_{consumed} ~ 1

> Q_{eng} >> 1, P_{electric} = 0.5-1 GWe

What is optimal A for HTS FNSF / Pilot Plant?

• Why high-temperature superconductors (HTS)?

–Higher current density & B_T, tolerates higher nuclear heating

Approach:

- Fix plasma major radius and heating power
 Choose compact device ≤ R₀ = 3m to reduce cost
- Apply magnet and core plasma constraints
- Vary aspect ratio from A = 1.6 to 4
- Vary HFS WC shield thickness: 30-70cm
- Calculate achievable Q_{DT} , Q_{eng} , required H_{98}
- Assess various trade-offs

Plasma constraints

- Fix plasma major radius at $R_0 = 3m$
 - Chosen to be large enough to allow space for HTS neutron shield and access Q_{eng} > 1
- Inboard plasma / FW gap = 4cm
- Use ε -dependent $\kappa(\varepsilon)$, $\beta_N(\varepsilon)$ (see next slide)
- Greenwald fraction = 0.8
- q* not constrained
 - q* is better ϵ -invariant than q₉₅ for current limit
 - Want to operate with $q^* > 3$ to reduce disruptivity
- 0.5 MeV NNBI for heating/CD fixed $P_{NBI} = 50$ MW
- H_{98y2} adjusted to achieve full non-inductive CD

Aspect ratio dependence of limits: $\kappa(\epsilon)$, $\beta_N(\epsilon)$

- NSTX data at low-A (+ NSTX-U/ST-FNSF modelling)
- DIII-D, EAST for higher-A

 $- \kappa \rightarrow 1.4 \text{ for } A \rightarrow \infty$

 Profile-optimized no-wall stability limit at f_{BS} ≈ 50%

- Menard PoP 2004

$$\beta_N \rightarrow 3.1 \text{ for } A \rightarrow \infty$$

$$\beta_{T} \propto A^{-1/2} (1+\kappa^{2}) \beta_{N}^{2} / f_{BS}$$

$$P_{fus} \propto \epsilon [\kappa(\epsilon) \beta_{N}(\epsilon) B_{T}(\epsilon)]^{4}$$

Engineering constraints

- Magnet constraints
 - Maximum stress in TF magnet structure = 0.8 GPa
 - Maximum TF winding pack current density = 70 MA/m^2
 - OH at small R \rightarrow higher solenoid flux swing for higher A
- Shielding / blankets
 - Assume HTS fluence limit of 3.5×10^{22} n/m²
 - Shield:10x n-shielding factor per 15-16cm WC for HTS TF
 - Include inboard & outboard breeder thickness for TBR ~ 1
 - "Effective shield thickness" includes shield + DCLL blanket
 - See backup for assumed thicknesses
- Electrical system efficiency assumptions:
 - 30% wall plug efficiency for H&CD typical of NNBI
 - $\ge 45\%$ thermal conversion efficiency typical of DCLL
 - Also include pumping, controls, other sub-systems
 - See Pilot Plant NF 2011 paper for more details

HTS performance vs. field and fast neutron fluence

R Prokopec et al

Figure 6. Critical currents (ASC-40) in magnetic fields applied parallel to the ab-plane (left) and parallel to the *c*-axis (right) before and after irradiation to a fast neutron fluence of $2.3 \cdot 10^{22}$ m⁻².

Figure 8. Normalized critical currents in a magnetic field of 15 T applied parallel to the ab-plane (left) and parallel to the *c*-axis (right) as a function of neutron fluence.

Parametric studies of next-step STs using HTS (J. Menard)

Simplified TF magnet design equations

$$V_1 + V_2 = \frac{1}{2} B_0 R_0 I_{\text{coil}} \ln\left(\frac{r_2}{r_1}\right)$$
(25)

$$r_1 V_1 + r_2 V_2 = \frac{1}{2} B_0 R_0 I_{\text{coil}}(r_2 - r_1)$$
 (26)

Fig. 5. Lorentz forces are normal to the conductor in the poloidal plane.

From J. Schwartz, Journal of Fusion Energy, Vol. 11, No. 1, 1992

Simplified TF model used here projects to max B_T at TF coil ~16-17T

- Assume winding pack provides no/little structural support
- Winding pack area fraction chosen to match stress & J_{wp} limits

Achievement of higher field limit (~17T) at coil could support **3x higher fusion power** vs. 13T limit of ITER-style magnets

Maximum Q_{DT} , Q_{eng} achieved for A = 1.8-2.5

Q_{eng} ≥ 1 requires shielding thickness ≤ 60cm A ≈ 2 optimal for thinner shield cases

Reminder: confinement multiplier not constant: H₉₈ is adjusted to achieve full NICD for assumed $\kappa(\epsilon)$, $\beta_N(\epsilon)$

Required H₉₈ is nearly constant ~ 1.75 for A = 1.8-2.5 \rightarrow optimal A \approx 2 is not a confinement scaling effect

Fusion gain $Q_{DT} \ge 7$ needed for $Q_{eng} > 1$

A few "Enhanced pedestal" H-modes (EPH) in NSTX have accessed H_{98} in the range of 1.5-2

- Highest H₉₈ in EPH appears to require:
 - Strong edge rotation shear (3D fields/edge island?)
 - Lithium wall coatings (lower edge recycling, v^*)
- Often transient (EPH lost w/ ELM) much more work needed to understand access and sustainment

Highest performance scenarios have $f_{BS} = 70-80\%$ and $q^* \ge 4-5$ for shield thickness < 50cm

Should be acceptable from control/stability standpoint (?)

• Further, all scenarios have $q^* \ge 3$ (benefit of high B_T)

NSTX-U aims to access fully non-inductive plasmas relevant to FNSF / Pilot-plants with κ ~2.6, β_N ~ 4.5, β_T = 12-15%

A ≥ 2 enables inclusion of modest ohmic solenoid for plasma current start-up / initial ramp-up

20T HTS solenoid → provide ~20-30% flat-top I_P for A ≈ 2.1 Ramp-up fraction ~50-100% for A = 3-4

HTS TF lifetime is very strong function of inboard shielding thickness

Inboard shield + blanket equivalent to 60cm WC \rightarrow 3FPY \rightarrow 6-7MWy/m² \rightarrow fulfill FNSF requirement

Selection of HTS-ST device goals and configuration

- Attempt to satisfy FNSF (fluence) <u>and</u> Pilot (net electric) goals:
 - $\ge 6 \text{ MWy/m}^2$ neutron wall loading (peak) at outboard midplane
 - Q_{eng} ~ 1 similar to previous PPPL Pilot Plant Study
- → Shield equivalent to ~60cm WC, $\Delta/R = 0.2 \rightarrow R_0 = 3m$
 - Assumes n-radiation damage limit of $3.5 \times 10^{22}/m^2$
 - HTS already tested to this damage fluence range
- With small / no inboard breeding, optimal A ~ 2.1-2.4
- But, for TBR ~ 1 probably need A \leq 2 \rightarrow chose / try A=2
- Chosen design point (so far):
 - R=3m, B_T = 3.5-4.1T, A=2, κ =2.5, β_N = 4.2 (~no-wall limit)
 - H_{98y2} ~ 1.7, H_{Petty} ~ 1.2-1.3, H_{ST} ~ 0.7, P_{fusion} ~ 500-600MW
 - 80% Greenwald fraction, 50MW of 0.5-0.7 MeV NNBI
 - I_P = 12MA, double-swing of small OH provides ~ 2-3MA

PF coil layout, long-leg divertor, vertical maintenance similar between Cu and HTS FNSFs

κ = 2.55, I_i = 0.82

A=1.7 Copper TF FNSF

A=2 HTS TF FNSF/Pilot **VECTOR-like A, but with small CS**

Vertical port maintenance used for OB blanket and divertor modules via separate cryostat for upper PFs

- Potential advantages of this low-A configuration:
 - Reduced part count + no / small inboard breeding → simplified maintenance (?)
- Need to include some breeding at top + bottom
 - Similar to Cu ST-FNSF
- 2016 will also study LM/Li wall and divertor compatibility with this HTS configuration

Assessing long-leg / deep-V slot divertor

Long-leg / Super-X aids heat flux reduction

A=2 HTS ST Shielding Assessment

- Focus on inboard (IB) shield main functions are:
 - Protect IB magnet for machine lifetime (3.1 FPY)
 - Enhance OB breeding by reflecting neutrons to OB
 - Generate low decay heat to control temperature response during accident \rightarrow avoid using WC filler near FW.
- Two-layer IB shield presents best option:

• 3-D analysis confirms radiation damage at IB magnet is near/below limits:

- Peak fast n fluence to HTS ($E_n > 0.1 \text{ MeV}$) 4.3 x 10¹⁸ n / cm²
- Peak nuclear heating @ WP
- Peak dose to electrical insulator
- Total nuclear heating in IB magnet

4.3 x 10¹° h / cm² 1.7 mW / cm³ 4 x10⁹ rads 8.7 kW

TBR vs. blanket internal component assumption being evaluated step-by-step

Steps:

- 1. 1-D infinite Cylinder: 100% LiPb breeder with 90% enriched Li
- 2. Li₁₇Pb₈₃ confined to OB blanket region and blanket behind divertor
- 3. 2 cm assembly gap between blanket modules
- 4. FS structure and FCI added to homogeneous mixture of blanket at top/bottom ends and behind divertor only
- 5. Materials assigned to 4 cm thick OB FW
- 6. Materials assigned to side, bottom/top, and back walls of blanket
- 7. IB and OB cooling channels

To be added:

- 8. SiC FCI
- 9. W Stabilizing shell
- 10. Penetrations

Expect final TBR ≈ 0.95-1 – Options to increase:
Thin inboard breeding region (assessing now)
Beduce conset ratio (reduces Q = no CS)

Reduce aspect ratio (reduces Q_{eng}, no CS)

Summary

- A ≈ 2 maximizes fusion performance at fixed R₀,
 P_{aux/CD}, normalized density for thin shield (Δ/R₀ < 20%)
 - A~2 likely requires thin (10cm?) blanket to achieve TBR~1
 - Note that A~1.8, R=1.7m ST-FNSF projects to TBR~1
 - $A \ge 2$ provides space for OH solenoid for I_P start-up
 - $A \ge 2.7-3$ could provide full OH ramp-up
- High normalized confinement (H₉₈ ~ 1.5-2) needed to achieve Q_{eng} > 1 for all "small" R=2.5-3m devices
- Performance/lifetime very sensitive to shield thickness
- 0.5-1MeV NNBI well matched to this device size
- HFS launch LHCD possible for (far)-off-axis CD

 $- A \approx 2$ with B_T = ~4T → 8T on HFS

Backup

Parametric studies of next-step STs using HTS (J. Menard)

Breeding blanket thickness assumptions

Lower-A maximizes TF magnet utilization

A = 2.5-3 maximizes blanket utilization

