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* The control and pacing of ELMs is needed in ITER

* Need to have a tolerable peak heat flux on the
divertor plates

* Prevent impurity contamination, especially W

 Need a larger ELMs frequency than “natural”
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« ELM pacing by D2 pellet
Injection has been tested
and proved to be effective
In several devices
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ELM pacing on DIII-D
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However, D2 pellets also fuel the plasma

* Need to decouple plasma fueling and ELM
control

ELM pacing by Lithium Granule Injection (LGI) has been
demonstrated on EAST, DIII-D and NSTX and has potential
for high injection rates

Lack of physical understanding of the processes at play

A modeling effort is needed to support next NSTX-U
experiments
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1. LGl principle and experiments

2. Pellet injection models

3. M3D-C1 modeling
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- Because of the 3D pressure perturbation due to the pellet
ablation, medium/high-n ballooning modes become
unstable.

« The ballooning modes are destabilized by the large local
pressure gradients of the pressure perturbation.
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Link between pellet parameters and profiles

perturbation

« Need to link the pressure perturbation needed to trigger an
ELM and the pellet parameters

» Pellet size

« Species (pure D2, Li or even LiD)
« Pellet velocity

* Injection location (HFS vs. LFS)
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« Top part: granule dropper
— four separate reservoirs, 0.3-0.9 mm
— vibrating piezoelectric disk

— Average drop rate function of applied
voltage (0-1000Hz)

« Bottom part: granule impeller

— rotary motor + ferro-fluidic feed-though,
frot <250 Hz

— Two-paddle impeller imparts 10-100 m/s
fin=500 Hz
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Figure from [A. Bortolon et al.]
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135064 @ 272 ms 135064 @ 280 ms 130389 @ 353 ms 130389@ 356 ms

130387@ 191 ms 130387 @ 197 ms 130385@ 393 ms 130385 @ 400 ms

Figure from [D. K. Mansfield et al.]
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LGl triggered ELMs in DIII-D

Its key to identify which ELMs
are associated with LGl

— Not all ablations are
followed by ELMs

— ELMs can occur naturally
during LGI phases

Modeling can provide some
insight
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LGl triggered ELMs in DIII-D
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Pellet models: Shielding mechanisms

For both hydrogen or impurity pellets, ablation is a self regulated
process, in the sense that the ablation cloud self-adapts for the heat flux at the

pellet surface to be just enough to maintain the shielding capability of the
cloud at the adequate value

[Pegourie]
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« Gas dynamic shielding (dominant mechanism for D2)

* Due to the collisions between the incident plasma
particles and that of the cloud, which is responsible for
the ionization and heating of the ablatant.

Electrostatic shielding

« Due to the negative charge of the cloud with respect to
the background plasma.

« Magnetic shielding

* Due to the partial expulsion of the magnetic field from
the cloud interior by the expanding plasma, and the
associated reduction of the incident heat flux.
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« Neutral Gas Shielding (NGS) model:

« Assume that the neutral gas shielding is the
dominant process

« Assume a constant pellet velocity

» Gives a pellet ablation rate which depends on
background plasma parameters
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[Gal2008]

« Comparison of Hybrid model, LLP model and NGS model

« LLP model: takes into account channel flows and
double electrostatic shielding
« Hybrid model: same as LLP but assumes a spherical

cloud
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Additional shielding effects counteract each other.
Ablation rate comparable to the NGS model, comparable to the experiment
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M3D-C1 solves the 3D two-fluid MHD equations in a

magnetized torus
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« High accuracy

« High order 3D finite elements: crucial to get a spatially
localized pellet

« Full 2F MHD equations: diamagnetic terms very
important for ELMs dynamic

« Can perform long-time simulations: ~ 10 ms

* Fully implicit time-advance algorithm

« Study of stability on the transport timescale

- Geometrical flexibility: mesh packing, realistic wall geometry
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« Neutral Gas Shielding (NGS) model currently being
implemented in M3D-C1.:

» Density source term taking into account the
pellet ablation

» Pellet ablation process is approximated to be
adiabatic: no heat sink in the temperature
equation

« First simulations on-going

« Maxwellian model also being tested
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« Start from a NSTX-U high performance stable equilibrium
and turn on pellets in the simulation.

Plasma Equilibrium (on sunfire28.pppl.gov)
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P[norm. units]
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Parameter scan on-going: pellet size, velocity
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Pellet radius ~ 5 mm,
pellet velocity ~ few 100m/s
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Conclusion

 Lithium Granule Injection is a promising ELM pacing
method

 New tool for ELM control

* First experimental results on several devices

* Modeling started with M3D-C1

« First implementation of a deuterium moving
pellet
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Implement a full LGl model in M3D-C1

Need a model including radiation, ionization, etc for
Lithium.

Possibly taking into account additional shielding effects

Is NGS model good enough approximation for LGI or
should we use a more complex model?

Comparison with experimental data

Application to NSTX-U scenarios and ELM control
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