A multi-machine analysis of non-axisymmetric and rotating halo currents

Clayton E. Myers¹

S. P. Gerhardt,¹ N. W. Eidietis,² R. S. Granetz,³ G. Pautasso,⁴ and the ITPA Working Group on Non-Axisymmetric Halo Currents

¹ Princeton Plasma Physics Laboratory (NSTX)

- ² General Atomics (DIII-D)
- ³ Massachusetts Institute of Technology (Alcator C-Mod)
- ⁴ Max-Planck-Institut für Plasmaphysik (ASDEX Upgrade)

57th Meeting of the APS Division of Plasma Physics Savannah, Georgia November 16–20, 2015

Poster Outline

- Goal: Study halo current non-axisymmetry and rotation across many machines → use a common analytical framework
- Working to build a halo current database filled with "data units" from various machines (NSTX, DIII-D, AUG, C-Mod, etc.)
- Progress report:
 - Status of the ITPA halo current database
 - Analysis framework and representative examples
 - Preliminary statistical analysis
 - Future plans

Asymmetry and rotation observed in many machines

- Halo currents often exhibit non-axisymmetric structure → n=0 with an n=1 "lobe"
- Full or partial rotation of the *n*=1 lobe observed in NSTX, AUG, and C-Mod
- How do non-axisymmetry and rotation vary with machine, discharge parameters?
- What common physics drives the observed nonaxisymmetry and rotation?

139369

Status of the ITPA halo current database

- One "data unit" per shot (or per toroidal array per shot):
 - Equilibrium data (I_P, B_T, κ , Z_P, W_{MHD}, MGI, ...)
 - Halo current data as a function of toroidal angle
 - At least four toroidal locations per sensor array
- Present contents of the database:
 - Recent NSTX shunt tile data:
 - Recent AUG shunt tile data:
 - DIII-D TAC shunt tile data:
 - C-Mod partial rogowski data:
- Recent additions:
 - C-Mod shots fully integrated
 - Current quench timing now analyzed

~140 shots × 2 poloidal locations
~4 shots × 2 poloidal locations
~60 shots × 5 poloidal locations
~90 shots × 1 poloidal location

Various halo current sensor arrays

Clayton E. Myers – APS-DPP 2015 – Savannah, GA – November 16–20, 2015

Representative halo current analysis (NSTX)

• Fit *n*=0,1 profile to each toroidal array at each time point:

 $I_h(\phi) = h_0 + h_1 \sin(\phi - h_2)$

- Amplitude of each component tracked by h₀, h₁
- The *n*=1 phase is tracked by *h*₂
- Total rotation calculated by integrating *h*₂ in time
- Rotation is only "counted" when the *n*=1 contribution is at least 25% of the peak RMS HC value

Representative halo current analysis (NSTX)

$$\mathsf{RMS}\{I_h\}^2 = \frac{1}{N_\phi} \sum_i I_h^2(\phi_i)$$
$$= h_0^2 + \frac{1}{2}h_1^2 + \mathsf{Residual}$$

$$n=1 \text{ fraction} \equiv \frac{h_1^2/2}{\text{RMS}\{I_h\}^2}$$

10-25% Interval 1: Interval 2: 25-50% Interval 3: 50-75% Interval 4: 75–100% 100-75% Interval 5: 75-50% Interval 6: Interval 7: 50-25% 25-10%

 $RMS{I_h}$ $\max{\text{RMS}{I_h}}$

Current quench timing analysis

Use traditional $t_{20} - t_{80}$ current quench analysis:

Determine characteristic "fast" quench time for each machine from the database ensemble of shots:

Machine	Characteristic Fast Quench Time
C-Mod	1.5 ms
NSTX	2.7 ms
DIII-D	3.2 ms
AUG	3.6 ms

Characteristic current quench timescales

Representative NSTX Example (rotating)

Clayton E. Myers – APS-DPP 2015 – Savannah, GA – November 16–20, 2015

Representative NSTX Example (locked)

Clayton E. Myers – APS-DPP 2015 – Savannah, GA – November 16–20, 2015

Representative DIII-D Example (rotating)

Clayton E. Myers – APS-DPP 2015 – Savannah, GA – November 16–20, 2015

Representative DIII-D Example (locked)

Clayton E. Myers – APS-DPP 2015 – Savannah, GA – November 16–20, 2015

Representative AUG Example

Clayton E. Myers – APS-DPP 2015 – Savannah, GA – November 16–20, 2015

Representative C-Mod Example

Clayton E. Myers – APS-DPP 2015 – Savannah, GA – November 16–20, 2015

Combined non-axisymmetry and rotation

- Average the TPF around peak I_{HC}
- Weighted sum of all sensor arrays for a given discharge
- NSTX:
 - Consistently peaked
 - Highest observed rotation
- C-Mod and DIII-D:
 - Cluster of quasi-axisymmetric points for both machines
 - Many non-axisymmetric points
 - DIII-D more peaked
- AUG:
 - High peaking but low rotation
 - Does this hold with more shots?

High rotation observed even for fast CQ times

- Use CQ data to look for trends
- Do slow CQs drive more rotation?
- Seemingly less correlation than expected
- High rotation in NSTX even for fast CQs
- Does CQ timing capture the "right" details?

Halo current "foot" develops before main CQ

Clayton E. Myers – APS-DPP 2015 – Savannah, GA – November 16–20, 2015

Rotation correlates with HC pulse duration and anti-correlates with HC magnitude

Non-axisymmetry correlates with HC magnitude

Summary

- Toroidally resolved halo current data obtained for four machines
- Common analysis procedure applied to all machines
- General findings:
 - At least some fraction of disruptions produce non-axisymmetric halo currents in all four machines
 - Significant rotation of the *n*=1 "lobe" observed in a non-negligible fraction of disruptions in NSTX, DIII-D, and C-Mod
- Preliminary trends:
 - Rotation loosely *correlates* with the HC pulse duration and *anti*correlates with the HC magnitude
 - Non-axisymmetry loosely *correlates* with HC magnitude
 - May be able to trade HC rotation for HC magnitude at the risk of increased non-axisymmetry

Future plans

- Detailed analysis of rotation w.r.t. the pre-CQ I_{HC} "foot"
- Analysis w.r.t. the equilibrium data:
 - Equilibrium data (I_P, B_T, κ , Z_P, W_{MHD}, MGI, ...)
 - Current quench times, edge safety factor, vertical position, etc.
- Fold in the new contributions:
 - More shots from AUG \rightarrow coming soon
 - Contributions from JET? \rightarrow difficult to compare
- Continue to work toward satisfying the ITPA WG specification doc:
 - "Windowed cosine power fits" rather than just simple n=0/n=1
 - Analyze locked vs. rotating cases independently
 - Comparison with proposed scaling laws