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NSTX-U will access new physics
with 2 major new tools:

1. New Central Magnet 2. Tangential 2"Y Neutral Beam

Higher T, low v* from low to high Full non-inductive current drive
- Unique regime, study new = Not demonstrated in ST at high-g+

transport and stability physics Essential for any future steady-state ST
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NSTX-U surpassed maximum
pulse duration and magnetic field of NSTX

Compare similar NSTX / NSTX-U Boronized L-modes, Pyg=1MW
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n=1 error field correction (EFC) optimized to
maximize pulse length, discharge performance

Compass scan steps: L-Mode Plasmas
I I I I I I I I
1. Select n=1 phase (1)2 " Plasma current [MA] N
. . i PN . [ ]
2. Ramp n=1 amplitude until 0.6 - 7 §
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e Six independently controllable window pane coils centered on the mid-plane

* Window pane coils can apply a static n=1 error correction field
e Further n=1 work: error field is different during ramp-up, diagnose and correct
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Recovered ~1MA H-modes with weak/no core MHD
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Start-up and ramp-up phases
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Breakdown successful at lower V,
anticipated from calculations for NSDTX U

* Smaller V., needed for breakdown o
compared to model predictions £ ool
— 8 kA OH precharge: V,,,, ~ 3V (first 2 ms) ) i

" Model predicted V,,, ~ 4V 0.0

= Scalesto V|,,,=2VatB;=1T

— Model matches experiment if the 3D error
field near inboard midplane reduced ~ 40%
= Consistent with smaller OH x TF tilting

* Breakdown region has smaller Z,
larger R extent compared to NSTX,

consistent with model
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Breakdown LRDFIT calculations led to viable
startup scenarios at two OH precharge levels

08 ||||||g|||||||||||||||||

 Larger Vloop needed with larger zosf gggg; ©);
ohmic precharge
— Size of field null reduced at larger |

—25% increase in V|, matches
calculations comparing 8 and 20 kA
cases

« 8 and 20 kA OH precharge
routinely used

— Both scenarios retained passive R
and Z stability, and achieved > 100
kA by 20ms for transition to ramp-up

* Will develop a library of start-ups 3
for other pre-charges
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“Gap” plasma

shape control used during

ramp- up and ramp-down phases

| Control seg

042 s

\ 1.00s /

= o

» Qutboard PF coils control the
position of flux surfaces on a control
segment

+— — Flux surface at inboard midplane

= Controls outer gap

™ — Flux surface at secondary passive plate

= Controls elongation

— All calculations assume plasma is up-
down symmetric

= Flux along control segment assumed to vary
linearly, constrained by measurements at the
primary passive plate

* Divertor coils in relational control

— Second term (“B”) compensates for

changing OH fringe field

D. Mueller



First L- and H-mode discharges on NSTX-U

used Gap control for the entire discharge

« Dashed lines (c): requested

1.2

| (b)
position of two flux surfaces on gj _ —
control segment N j
_ Z ~ SPP flux projection
* Red lines (c): flux surface e 7 S ﬁ ------------
position calculated by Gap math £ 14 \err(spe) Gap(SPP) -
— Prop. gain only, always a finite error = 1 EF@'T('Bl) Gop(IB)’
x 1.2 T AAN
* Blue lines (c): flux surface as ok inboard (18) flux projection
calculated by offline EFIT — ¥
— Difference from red lines due to _ i R B
assumptions in Gap calculation k] R —
3 ___PF5 ,
 PF1A provides diverting field S R
— Slight decrease in PF coil currents during 0.0 02 04 06 08 1.0
flattop due to change OH fringe field Time (s)
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Plasma Control
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Additional flux/voltage differences improved
estimation of vertical position/velocity

- 2.0 ope . .
* ~60 NSTX-U equilibria generated with ISOLVER free
boundary code
L5 * Flux loop weights determined by least squares fit to
IpZp
10 * Optimal weights adjusted based on EFIT
reconstructions of experimental discharges
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Filtering added to remove unwanted pick-up
on vertical estimation sensors

* Voltage differences

— power supply ripple and
noise spikes Too fast for
control system response

* Flux differences

— Kalman filter used to
estimate the flux differences
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Improved vertical control allows NSTX-U to achieve
elongation similar to lower aspect ratio NSTX

3.0 v T

Kmax(WMHD)
N
o
[

1.0
0.0 0.5 1.0 1.5

Iimax
 NSTX shots are mostly H-Mode - (WHHD)
 NSTX-U vertical control gains tuned during li>1 operation

* Lower li shots in NSTX-U are H-modes
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Updated and improved rtEFIT for real-time
reconstruction on NSTX-U

» Updated grid size to 65x65 (from 33x33) and vessel/coil
model

 Tested using TRANSP data prior to run, rt4 early on

* Multi-threading enabled more complex calculations
— By |, g calculated in real-time
— Coil and vessel currents fit instead of treated as known
 Calculated gaps and X-point positions match closely to
offline magnetics-only EFIT (EFITO1)
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Anti-aliasing filter fixed fits due to PF1A
power supply ripple

- Aliasing of power supply ripple on slow loop time scale
caused poor fitting, oscillations
 tEFIT fast and slow loops

— Fast (every PCS cycle time): determines flux at control points
based on last reconstruction and new diagnostics

— Slow (~5-25 PCS cycle times): single iteration reconstruction
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ISOFLUX shape control on NSTX-U

« Control points are the
intersection of control segments

with the target boundary

* Two main algorithms:

—|ISOELONG - inner wall limited
discharges

—|ISODNULL - diverted discharges

* Total re-write of code by K.
Erickson
— 75% reduction in # lines of code

— Makes changing/adding
functionality much easier

>
V4
27 Control Grid
Control Segment

@UNSTX-U

17



ISODNULL used to control the location of
the outer strike points

203879

Outer strike point radius
1. s PF1AU
E 1.5
o
£09
8 14
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 Demonstrated ability to scan the outer strike point location with
the X-point height and outer gaps fixed using PF1A and PF2s
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Control of drg,,

* drg,, Is the midplane radial distance between the

upper and lower X-point fluxes

« Controlled by adjusting the upper and lower-outer gap
control point locations in real-time

— 203734 d r
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A novel method of inner gap control
has been tested

* No shaping coils on inboard side, available coils
already assigned...

—No way to independently control the inner gap
* Approach:

— Automatically adjust other shaping parameters based on
operator provided weight matrix to achieve desired inner gap

£.1.035 : : 0.72 0.08 | : : : :
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Non-inductive plasma plans

QDNSTX-U D. Mueller



Coaxial Helicity Injection (CHI) initiation
produces 100’s of kA in cold plasma

eCHI discharge using 30 mF at 1.46 kV.
20 frrrrrrrrrrrrrrr
15k P Vinj(kV) 142163

1.0

"N 0.5

Outer TF Ofg

linj(kA)

HHFW 10

5

308
200

. Gapacitor

-Bank 100k

up to 50 mF
Lower Divertor Goils 0 il
0.005 0.010 0.015 0.020 0.025 0.030
TIME(sec)

* The injector current decays after the crowbar is fired and is zero at 11 ms.
* The toroidal current is 280 and 160 kA at 9 and 11 ms respectively.

* A relatively long decay time of the toroidal current is achieved only when
impurities are controlled.
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Electron Cyclotron Heating (ECH) heats CHI initiated

~ |@ . (e)
< S
= 0.2} 1 o _ |
< 2 05
0— ' ' ' c®
s '[® total " 2 ) o
s absorbed = 120035
» 0.5 g — 1=0.05s |
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— 2 =|
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o 0 0.5 1
= . - r/a
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[ 0 . . . 10 EC power density (W/cm )
A 2((d) 5 y
21| central ] 0 .

0.1

005 01 015 0.2 0.25

0.2
time (s) 0.05

r/a 0 0 time (s)
Simulation of EC heating. Left panel: time traces of (a) plasma current, (b) injected and
absorbed power, (c) electron temperature on axis compared with an ohmic plasma,

(d) central and line-averaged density. Right panel: profiles of (e) electron density (f)
electron temperature and (g) EC heating profile.

@UNSTX-U F.M. Poli et al 2015 Nucl. Fusion 55 123011 D. Mueller

23



High Harmonic Fast Waves (HHFW) drive
current at low density for T, is >1 keV

-1 -1

k=3m k=3m
4 4
< ions = ions
(a) % 2 % 2 (d)
o o electrons
g : ==
(b) E 4 E Te .
S > ions @m 2 N (e)
—° electrons =
0 0

0.4 0.4 m FWCD

= ohmic < ohmic
(c) iE(, 0.2 =
- bootstrap £ bootstrap (f)
e A A -
0 0

0O 01 02 03 04 0O 01 02 03 04
time (s) time (s)

Comparison of two simulations without (left) and with EC heating (right) for
parallel wavenumber of k|, =3 m-1. (a) Injected power and power absorbed by
the ions and the electrons. (b) central value of electron and ion temperature (c)
total current waveform and contributions: ohmic (black), FWCD (blue), bootstrap

(red).
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At higher density HHFW less effective NBI
ramps-up plasma current.

— * Simulations with EC, HHFW and NBI at start-
(a) % 5 up (a) HHFW injected power and power
- electrons absorbed to the electrons (red) and to the fast
g ' . ions (green). (b) Neutral Beam injected (black)
.l injected |  power, and absorbed by the electrons (red)
(b) 2 and by the ions (blue). (c) Central value of
21 losses, shinethru 1 electron and ion temperature. (d) current
° R : : waveform (thick black) and contributions:

FWCD (magenta), beam current (blue), ohmic
(black) and bootstrap (red), the total non-
inductive current is also shown for
comparison (green).

electrons

bootstrap |

L

0 0.1 0.2 0.3 0.4 5

@NSTX-U F.M. Poli et al 2015 Nucl. Fusion 55 123011 D. Mueller 25



