

Impact of the Digital Coil Protection System and Plasma Shutdown Handler on NSTX-U Operations

S. P. Gerhardt¹, D. Battaglia¹, <u>M.D. Boyer¹</u>, K. Erickson¹,

D. Mueller¹, C. Myers¹, S. Sabbagh², H. Schneider¹, T. Stevenson¹ 1: Princeton Plasma Physics Laboratory, 2: Columbia University

1: Princeton Plasma Physics Laboratory, 2: Columbia University

58th Annual Meeting of the APS Division of Plasma Physics San Jose, CA, 11/2/16

DCPS Overview

- NSTX-U power supplies can produce combinations of currents which result in forces that exceed limits on coils and their supports.
- DCPS = Digital Coil Protection System
- System
 → hardware, realtime software, parameter determination and archiving, testing, ops. procedures.
- Realtime software runs simultaneously in two independent locations:
 - Dedicated computer in the "junction area" adjacent to the power supply room.
 - Same computer as the plasma control system, in the FCC adjacent to the control room.
- DCPS can take only a single action...power supply crowbar that ends the shot.

DCPS Computes Four "Types" of Algorithms

- Post-Disruption Current Analysis on Current Vector I:
 - $-I_{post-pis}=I-I_{P}P$
 - P is a vector derived from all coil-plasma mutual inductance.
 - Force algorithm evaluated on I & I_{post-dis}
- "Action" Integrals:
 - $-A_i = integral(I_i^2 dt)$
 - $-A_{i,full} = A_i + I_i^2 \tau_i / 2 \leftarrow \tau_i$ accounts for a potential power supply crowbar
- Simple Forces:
 - $F_i = I_i \Sigma \alpha_{i,j} I_j$
 - Radial and vertical forces, internal stresses and moments
- Complex Forces:
 - $C_{i} = \Sigma \beta_{i} F_{Z,i} + \Sigma \chi \beta_{i} F_{R,i} + \Sigma \delta_{i} A_{i} + \Sigma \varepsilon_{i} A_{i,full} + \Sigma \phi_{i} I_{i}$
 - Used for combining vertical forces, bolt stresses, OH-TF interaction

Action, Simple Forces, and Complex Forces are All Compared to Positive and Negative Limits

List of DCPS Component Protection

Including the heating

after a suppress and

bypass

- Overcurrent
- I²t integrals
- T_{TF}-T_{OH} – Must limit this due to OH-TF Frictional Interaction.
- Vertical and radial forces on coils
- Combinations of vertical forces
- PF Clamp Bolt Stresses
- Local stresses in OH, PF-4, PF-5
- Torsional Shear Stress
- TF Outer Leg Moments

Including calculations of the forces following a disruption with a simple model for the post-disruption currents.

DCPS Uses Two Realtime Computer, With a **Distributed System**

NSTX-U Coils

PF-5,4 Coils:

- Provide the vertical field,
- Upper and lower coils in series.

PF-3 Coils:

- Control the plasma vertical position by applying a radial field (up-down asymmetric currents).
- Also help in controlling the elongation, squareness, and dr-sep
- Upper and lower coils independently controlled

PF-1a,1b,1c,2 Coils:

- Control the divertor geometry, X-point and strike point locations.
- Upper and lower coils are independently controlled.

OH Coil:

• Single coil provides loop voltage to the plasma.

TF Coil (not shown)

• Makes toroidal field.

Configuration Parameters Handled Via Excel and MDS+

To change the protection parameters

Make a new spreadsheet and use it to generate new trees

Example of DCPS Terminating a Shot

DCPS Prevents OH-TF Frictional Interaction

- As OH coil is wound directly on the TF, must avoid the TF becoming hotter than the OH.
 - If it does, the thermal axial growth of the TF will, via friction, put an axial force on the OH coil that could damage it.
- DCPS uses the "Complex Force" algorithm to protect against this:
 - Assume the temperature rise is proportion to the I²t integral
 - Temperature difference between coils
 - $\mathsf{T}_{\mathsf{TF}}\text{-}\mathsf{T}_{\mathsf{OH}}\text{=}\mathsf{T}_{\mathsf{TF},0}\text{+}\delta_{\mathsf{TF}}\mathsf{A}_{\mathsf{TF}}\text{-}\mathsf{T}_{\mathsf{OH},0}\text{-}\delta_{\mathsf{OH}}\mathsf{A}_{\mathsf{OH}}$
 - This fits the "complex force" algorithm template

DCPS Enforces These Quantities <1 C

Bond is broken, Aquapour is not Removed, OH Lorentz Forces Off, OH at 20C TF Ramped to 100C

Vertical Forces on Coils Were the Primary Sources of Trips (I)

Use database that archives maximum and minimum values for each algorithm

This sort of trip only in L-mode, which requires more divertor coil (PF-1a, PF-2) current for a given I_P.

58th APS-DPP, DCPS & Shutdown Handler, S.P. Gerhardt, 11/2/2016

Vertical Forces on Coils Were the Primary Sources of Trips (II)

- 1353 Shots & 33 Algorithm Trips
- 3 trips of the TF Total Outer Leg Out-of-Plane Moment
 - This algorithm was deemed unnecessary and subsequently disabled.
 - Instead rely on the total moments on the separate upper and lower halves of the outer leg.
- 4 spurious trips of the aquapour protection algorithm due to garbled data stream (see next slide)
- 3 l²t trips on the OH coil during long pulse.
- 23 vertical force trips (mostly related to too-large divertor coil current in L-mode, due to higher I_i)
 - 1 on PF-1aU
 - 4 on PF-2U
 - 9 On PF-2L
 - 9 on PF-1aL

Comments on Initial Operating Experience (SPG Opinions)

- Highly reliable
 - Only frustrating day was when an arcing Penning gauge power supply was causing garbled realtime data blocks, which DCPS repeatedly noted and caused a crowbar.
- Should not have put DCPS on the control computer
 - Sharing a realtime computer with the plasma control system resulted in numerous software and hardware complications.
 - Would have been better to have two independent but identical stand-alone computers.
- Minimal number of algorithm trips
 - Only ~2.5% of shots had algorithm trips.

Shutdown Handler Designed to Gracefully End the Plasma

- Why do this?
 - Want to limit control transients at the end of the discharge.
 - Want to support critical research in disruption detection/avoidance.
- State machine implementation
- Coding of the state machine is largely free of detailed plasma physics/control.

Diagram of the State Machine Presently Implemented in PCS

What Controls, and is Controlled By, the Shutdown Handler?

Controls It

- Can go into fast rampdown by:
 - Detection of large n=1 mode.
 - Detection of large loss of plasma current.
 - Detection of excessive vertical motion.
 - $I_{\rm P}$ drops beneath value required for rtEFIT while using ISOFLUX
 - Operator request

Operator request

• Can go into slow rampdown by:

- Detection that OH coil is approaching a heating limit.
- Detection that OH coil is approaching a current limit.

It Controls

- At each state change, switch the control algorithm used by actuators.
 - For instance, switch from diverted to innerwall limited shape.

Shutdown Handler Used to Create Smooth L-Mode Rampdown

- Three AM fiducial shots from week of 4/4/2016.
- Single operator waveform modified at t=1.5 to start the rampdown.
- Rampdown is IWL, with power and I_P slowly ramped off.

L-mode Rampdowns Triggered By a Single Switch

Shutdown Handler Also Used to End Failing Discharges

- Shot requested to go longer, but vertical motion detected.
- Rampdown initiated.
- Plasma inboard limited, only slowly drifts up.

NSTX-U

Shutdown Handler Allows Us to Reduce Stress on Components

 Consider moment on the TF outer leg due to I_{TF} crossing the poloidal field.

NSTX: Large PF transients during disruptions -> moment was both positive and negative -> more mechanical fatigue on coils.

NSTX-U: Reduced PF transients ->the moment on coils is one-sided -> reduced mechanical fatigue.

Note: The shot with the worst moment (204040) was due to a misconfiguration of the shutdown handler.

Next Steps For Shutdown Handler

- During this run, we never activated the part of code allowing a transition from slow to fast rampdown:
 - Fixed a code bug, but didn't get a chance to test it before PF coil failure.
- Need to allow the RWM sensors to trigger the rampdown
 - They were running in realtime, but never flipped the switches to enable them in this functionality.
- Need to see if some other configuration of the vertical position sensing code can be less sensitive to n=1 modes.
- Longer term:
 - Use to trigger MGI?
 - Incorporate additional tests of disruption proximity as per DECAF?

