

Development of the NSTX-U Advanced Divertor Control

P. Vail and E. Kolemen

Department of Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540

Presented at the 58th Annual Meeting of the APS Division of Plasma Physics November 2, 2016

Introduction

- The determination of techniques for mitigating the heat flux onto plasma-facing surfaces is a major goal of current tokamak research.
- High heat fluxes to the walls push the limits of present-day engineering materials and active cooling technologies.
- ITER expected that 70-90% of power will need to be radiated with standard single x-point divertor.¹
- NSTX-U peak heat fluxes over 20 MW/m² have been predicted in 2 MA, 12 MW NBI-heated discharges.² Long pulse limit for graphite PFCs is 10 MW/m².
- Novel solutions to the heat flux problem are needed.

¹Kotschenreuther M. et al 2007. Phys. Plasmas. 14 072502. ²Gray T.K. et al 2011. J. Nucl. Mater. 415 S360.

NSTX-U Poloidal Cross-Section

Divertor Heat Flux

$$q_{peak} = \frac{P_{heat}^{SOL} \left(1 - f_{rad}\right) f_{div} \sin\left(\theta_{plate}\right)}{2\pi R_{strike} f_{exp} \lambda_q}$$

q_{peak}	peak heat flux at the divertor strike point (P_{strike}/A_{wetted})
P SOL heat	input heating power to SOL
f _{rad}	fraction of radiated power
f _{div}	fraction of power to divertor leg of interest
θ_{plate}	poloidal angle between divertor plate and magnetic field line
R _{strike}	major radius of divertor strike point
f _{exp}	flux expansion
λ_q	width of heat flux profile in SOL

Stangeby, P.C. The Plasma Boundary of Magnetic Fusion Devices. Bristol: IOP Publishing Ltd, 2000.

The Need for High Flux Expansion

Menard J.E. et al 2012. Nucl Fusion. 52 083015.

NSTX-U

Vail and Kolemen – NSTX-U Advanced Divertor Control – 11/02/2016

Advanced Divertors

- Investigation of high flux expansion divertors is a major near-term research goal of the NSTX-U program.
- Two novel magnetic geometries have proven to be attractive candidates for steady-state (and potentially ELM transient) heat flux mitigation **snowflake** and **x-divertor**
- These divertors have the following magnetic properties¹:
 - higher poloidal flux expansion (compared to single x-point divertor)
 - longer x-point connection length
 - higher divertor flux tube volume
 - Four separatrix branches and strike points
- **SNOWFLAKE** characterized by a second-order poloidal field null (or two closely-spaced first-order nulls)
- **X-DIVERTOR** snowflake-like with the additional property that the secondary null is located in the vicinity of the strike point

¹Soukhanovskii V.A. et al 2012. Phys. Plasmas. 19 082504.

Snowflake Divertor Configurations

NSTX-U

Advanced Divertor Control

- NSTX experiments demonstrated the need for active magnetic control of snowflake divertor configurations.¹
- Advanced divertor control presents new challenges identification and control of multiple x-points and other parameters
- Snowflake / x-divertor tend to be topologically unstable sensitive to changes in OH coil current, plasma profiles. (to be further characterized)
- Aim is for near-term implementation of the following control capabilities at NSTX-U:
 - multiple x-point locations (for snowflake divertor)
 - strike point location (for x-divertor)
 - flux expansion independent of x-point locations

¹Soukhanovskii V.A. et al 2012. Phys. Plasmas. 19 082504.

Snowflake Control System

X-Point Location Algorithm

• Consider the Grad-Shafranov equation with zero current density:

$$(R+x)\frac{\partial}{\partial x}\left(\frac{1}{R+x}\frac{\partial\psi}{\partial x}\right) + \frac{\partial^2\psi}{\partial v^2} = 0$$

where the coordinate system has been shifted to be local to the null point(s) – new variables x and v

$$B_x = -\frac{1}{R+x}\frac{\partial\psi}{\partial v} \qquad B_v = \frac{1}{R+x}\frac{\partial\psi}{\partial x}$$

• Then expand the magnetic flux function to third order in the new coordinates

$$\psi = l_1 x + l_2 v$$

+ $q_1 x^2 + 2q_2 xv + q_3 v^2$
+ $c_1 x^3 + c_2 x^2 v + c_3 xv^2 + c_4 v^3$

Ryutov, D.D. et al 2010. Plasma Phys. Control. Fusion. 52 105001.

X-Point Location Algorithm

- The goal is to determine the expansion coefficients under the constraint that $oldsymbol{\psi}$ approximately satisfies the current-free G-S equation.
- Magnetic field components in terms of 9 expansion coefficients:

$$B_x = -\frac{1}{R+x} \left(l_2 + 2q_2x + 2q_3v + c_2v^2 + 2c_3xv + 3c_4v^2 \right)$$
$$B_v = \frac{1}{R+x} \left(l_1 + 2q_1x + 2q_2v + 3c_1x^2 + 2c_2xv + c_3v^2 \right)$$

• Three constraints come from substituting $oldsymbol{\psi}$ into the G-S equation:

$$-l_1 + 2q_1R + 2q_3R = 0$$

$$-2q_1 + 6c_1R + 2c_3R = 0$$

$$-2q_2 + 2c_2R + 6c_4R = 0$$

- For a second-order null at the origin of the x, v coordinate system: l's and q's = 0.
- For a snowflake with two closely separated x-points: l's and q's are small.

Ryutov, D.D. et al 2010. Plasma Phys. Control. Fusion. 52 105001.

NSTX-U

Finding the expansion coefficients

• 6 free expansion coefficients are found by sampling B_x and B_v at three points and then solving the following linear equations for $i = \{1, 2, 3\}$.

$$-(R+x_i) B_{x,i} = l_2 + 2q_2x_i + 2q_3v_i - 3c_4 (x_i^2 - v_i^2) - 6c_1x_iv_i$$

(R+x_i) $B_{v,i} = l_1 - 2q_3x_i + 2q_2v_i + 3c_1 (x_i^2 - v_i^2) - 6c_4x_iv_i$

• B_x and B_v obtained in real-time from rtEFIT.

Snowflake Shape Descriptors

Control Algorithm

X-point Locator Compute series solution $\psi_{exp}(r,z)$ to the homogenous Grad-Shafranov equation,

$$r\partial_r \left(r^{-1}\partial_r \psi \right) + \partial_{zz}\psi = 0.$$

Coefficients of series are found using magnetic field values (B_r, B_z) at 3 points. We then find the x-point locations by solving,

$$-r^{-1}\partial_z\psi_{exp} = 0, r^{-1}\partial_r\psi_{exp} = 0.$$

Compute matrix $\partial x / \partial I$ and its pseudoinverse. We then compute the required coil currents,

$$\Delta I = \left(\partial \mathbf{x} / \partial \mathbf{I}\right)^{\dagger} \Delta x.$$

Coil currentfSnowflakerequestsposition errors

PF Coil Control PID controller computes voltage requests for the PF coils.

$$V(t) = V(t-1) + R \cdot \text{PID}(\Delta I)$$

Motivation for Plant Modeling

- For the purposes of control design and simulation, we need a *plant model* that can serve as a proxy for the *tokamak and plasma*.
- Model should adequately capture the physics of interest.

- We have developed a model of NSTX-U which describes the electromagnetic interactions between the poloidal magnetic field coils, passive conductors, and plasma.
- Useful for shape control development and simulation.

Vacuum Modeling

• In the absence of plasma, the relevant equations are as follows,

 $M_{cc}\dot{I}_{c} + R_{c}I_{c} + M_{cv}\dot{I}_{v} = V_{c} \quad \text{coils}$ $M_{vv}\dot{I}_{v} + R_{v}I_{v} + M_{vc}\dot{I}_{c} = 0 \quad \text{vessel}$

• The equations can be written in standard state-space form,

 $\dot{x} = \mathbf{A}x + \mathbf{B}v$ $y = \mathbf{C}x$ \longleftarrow Map from currents to diagnostic signals

where

• Mutual inductances and resistances are computed by discretizing the coils and passive conductors (vessel).

Conductor discretization

Vacuum Model Validation

- Model of the coil and vessel current dynamics (in the absence of plasma) can be validated using data from NSTX-U magnetics calibration or power supply test shots.
- Sample test shot (204735)

• Validation Method: Given prescribed set of OH + PF coil current waveforms (such as above), integrate the model to determine vessel currents and flux loop signals.

Flux Loop Signal Comparison

Sample flux loop signals (65 total)

204735 Simulated FL signal

Closed-Loop Simulation Overview

• We use the validated model of the tokamak + plasma for closed-loop control simulations.

• Implemented in MATLAB/Simulink.

Closed-Loop SFD Development

- The simulation tool was used to demonstrate closed-loop control of snowflake divertor configurations in NSTX-U.
- Two scenarios are used to demonstrate the capabilities of the control system:
- 1. Scan from a standard single x-point divertor to a near-exact snowflake.
 - Controlled Parameters: rSnow, zSnow, x-point separation (rho)
 - Move secondary x-point from outside the machine into close proximity to the primary x-point.
- 2. Scan from SFD-minus to SFD-plus configuration at constant x-point separation.
 - Controlled Parameters: x-point separation (rho), orientation (theta)

Standard Divertor to Near-Exact SFD

Control is enabled at 50 ms

Scan of Snowflake Angle

Control of the snowflake angle (theta) is heavily-weighted relative to the x-point separation (rho). The snowflake angle therefore quickly approaches its target.

The snowflake x-point separation (rho) begins to approach its target only when the angle reaches a steady-state (150 ms).

The algorithm allows the physics operator to tune the relative performance of the four SFD parameters (rSnow, zSnow, theta, rho).

Summary

- Advanced divertors (ADs) such as the snowflake divertor are promising candidates for management of high power exhaust.
- ADs require most sophisticated control schemes to regulate the magnetic configurations.
- A algorithm has been developed for control of the snowflake divertor configuration in NSTX-U.
- Closed-loop simulations demonstrate that the algorithm can successfully steer divertors from initial to target configurations.
- In addition, we have developed a time-dependent model of the NSTX-U coil, vessel, and plasma system

