

Study of Ion and Electron Scale Turbulence in an NSTX H-mode Plasma Using a Synthetic High-k Diagnostic and Gyrokinetic Simulation

J. Ruiz Ruiz¹

Y. Ren², W. Guttenfelder², A. E. White¹, S.M. Kaye², B. P. LeBlanc², E. Mazzucato², K.C. Lee³, C.W. Domier⁴, D. R. Smith⁵, H. Yuh⁶ 1. MIT 2. PPPL 3. NFRI 4. UC Davis 5. U Wisconsin 6. Nova Photonics, Inc.

58th Annual Meeting of the APS Division of Plasma Physics October 31-November 4, 2016, San Jose, California

Alcator C-Mod

Past Work on NSTX H-mode Plasma Showed Stabilization of e- scale Turbulence by Density Gradient

- NSTX NBI heated H-mode featured a controlled current ramp-down. Shot 141767.
- An increase in the equilibrium density gradient was correlated to a decrease in high-k density fluctuation amplitude (measured by a high-k scattering system). *cf.* Ruiz Ruiz PoP 2015.

Experiment, Linear and Nonlinear Gyrokinetic Simulation Showed Density Gradient Stabilization of e- scale Turbulence

- Experimental k-spectrum is measured with a high-k scattering diagnostic (*cf.* Smith RSI 2008).
- Peak amplitude in experimental k-spectra, linear growth rate and nonlinear electron heat flux using gyrokinetic simulation is reduced, and shifted to higher wavenumber with increasing density gradient.

Electron Scale Turbulence Cannot Explain Experimental Electron Heat Flux

- Previous simulation work focused on electron scale turbulence.
- Low-k turbulence was assumed stabilized due to high ExB shear:
 - $\omega_{\text{ExB}} \sim \text{low-k growth rate } \gamma$.
 - Neoclassical levels of Q_i.
- Electron heat flux from experiment & gyrokinetic simulation is reduced at high density gradient

• Where is missing Q_e coming from?

Probe Origins of Anomalous Electron Heat Flux Using Two Different Approaches:

1. Revisit the assumption:

'lon scale turbulence is suppressed by ExB shear in NSTX NBI heated Hmode plasmas'.

Approach: Identify ion scale instability and ion scale turbulence contributions to Q_e using linear and nonlinear gyrokinetic simulation (GYRO).

2. To what level of confidence do we trust transport predictions from previous escale simulations?

Approach: **Develop a synthetic high-k scattering diagnostic** for quantitative comparisons between electron scale turbulence measurements and nonlinear GYRO simulations.

NSTX-U

58th Annual Meeting of the APS Division of Plasma Physics, Oct 31-Nov 4, San Jose, California

1. Revisit the assumption *"ion scale turbulence is suppressed by ExB shear"*.

Outline

- Characterization of linear ion scale instability at low and high ∇n (slides 7).
- Electron thermal transport due to ion scale turbulence at low and ∇n (slides 8,9).
- Summary of ion scale turbulence studies (slide 10).

Ion Scale Instability is Marginally Stable at Low ∇n , Driven Highly Unstable by Parallel Flow Shear at High ∇n

- Driven by ∇T_e , β , B_{\parallel} , stabilized by ∇T_i , β' , A_{\parallel} .

Parallel flow shearing rate (GYRO) γ_{p} , ω_{0} toroidal rotation frequency

Local Ion Scale Nonlinear Gyrokinetic Simulation Shows Ion Scale Turbulence is Negligible at Low ∇n

- Negligible Q_e and Q_i from electrostatic (ES) & electromagnetic (EM) ion scale local gyrokinetic simulation at $r/a \sim 0.7$ (GYRO).
 - Simulations included ExB + parallel flow shear.
- Electron scale simulation showed ~0.45MW ($30\% Q_e$).
- Missing Q_e^{exp} remains unexplained.

NSTX-U

Missing Q _e exp remains	s unexplained.	
Lo	w ∇n	
	Q _e	Q _i
Experiment (TRANSP)	1.5 MW	0.25 MW
ES ion scale GYRO (all gk)	10 ⁻² MW	2.10 ⁻³ MW
	0.1 Q _{gB}	2.10 ⁻² Q _{gB}
EM ion scale GYRO (all gk)	10 ⁻³ MW (all ES!)	<10 ⁻⁴ MW
	10 ⁻² Q _{gB}	$\sim 10^{-4} \text{ Q}_{gB}$

cf. summary + backup slides for numerical resolution details.

Local Ion Scale Nonlinear Gyrokinetic Simulation Shows High ES Transport at **High** ∇ **n**, Stabilized by EM effects

- High electron heat flux levels predicted by ES ion scale simulation (Fig. 1).
- Q_e is reduced a factor ~200 by including $\delta A_{\parallel} + \delta B_{\parallel}$ (Fig. 2).
 - Electromagnetic stabilization of ion scale turbulence.
 - Simulations included ExB + parallel flow shear.
- Electron scale simulation showed $Q_e < 10^{-2}$ MW.
- Q_e^{exp} remains unexplained.

High ⊽n			
	Q _e	Q _i	
Experiment (TRANSP)	1 MW	0.2 MW	
ES ion scale GYRO (dke)	3.2 MW	1.3 MW	
	23.6 Q _{gB}	9.3 Q _{gB}	
EM ion scale GYRO (dke)	~2.10 ⁻³ MW	~2.10 ⁻³ MW	
	$\sim 2.10^{-2} \text{ Q}_{gB}$	$\sim 2.10^{-2} \text{ Q}_{gB}$	

cf. summary + backup slides for simulation details.

Ion Scale Simulations Presented Cannot Explain Q_e^{exp} neither at Low nor High ∇n

- Numerical Simulation details of local, ion scale simulations (r/a~0.7)
 - 3 gk species (e-, D, C), Z_{eff}~1.85-1.95
 - EM: A_{||}+B_{||}, β_e~ 0.3 %
 - collisions $(v_{ei} \sim 1 c_s/a)$
 - ExB shear and parallel flow shear ($\gamma_E \sim 0.13-0.16 c_s/a$, $\gamma_p \sim 1-1.2 c_s/a$).
- Summary and future work on ion scale turbulence:

	Low ∇n	High ⊽n
e- scale: Q _e ^{sim} /Q _e ^{exp}	~30%	<1%
ion scale: Q _e ^{sim} /Q _e ^{exp}	<0.1%	~0.2%

- High ∇n case is disconcerting! Q_e^{sim}(e- scale)+Q_e^{sim}(ion scale) < 1% Q_e^{exp}
- Further characterize unstable ion scale mode at **high** ∇ **n** (linear GYRO).
- Ion scale simulations presented are low resolution: need higher resolution runs
 - Linear GS2 suggests presence of unstable modes at $k_{\theta}\rho_s < 0.1$ driven by β .
 - Q_e spectrum peaks at lowest resolved k ($k_{\theta}\rho_s \sim 0.1!$) *cf.* slide 9.
- Study profile effects using global simulation (radial box $L_r/a \sim 0.3 0.5!$).

2. Develop a Synthetic High-k Scattering Diagnostic

Outline

- Operation of old high-k scattering diagnostic + Previous work on synthetic high-k scattering (slide 12).
- Preambles + Preliminary steps (slide 13).
- Implementation of Synthetic Diagnostic (slides 14-17)
 - Coordinate mapping: Prerequisites (slide 15) Jacobian Transformation (slide 16)
 - Filtering (ongoing work)
- Results from Coordinate Mapping (18-23).

Operation of Old High-k Microwave Scattering Diagnostic System at NSTX

View from top of NSTX (D.R. Smith PhD thesis 2009)

Old High-k Scattering System

- Gaussian Probe beam: 15 mW, 280 GHz, $\lambda_i \sim 1.07$ mm, a = 3cm (1/e² radius).
- Propagation close to midplane $=> k_r$ spectrum.
- 5 detection channels => range $k_r \sim 5-30$ cm-1 (high-k).
- Wavenumber resolution $\Delta k = \pm 0.7$ cm-1.
- Radial coverage: R = 106-144 cm.
- Radial resolution: $\Delta R = \pm 2 \text{ cm}$ (unique feature).

Previous Work on Synthetic high-k cf. Poli PoP 2010

- Previous synthetic high-k scattering was implemented with GTS (*cf.* Wang PoP 2006).
- Synthetic spectra affected by systematic errors (simulation run time, low k_{θ} detected)

Preliminary Steps Prior to the Implementation a Synthetic High-k Scattering Diagnostic using GYRO

Preambles:

- Scattering data from the high-k scattering system is spatially localized: scattering location is (R_{loc} , Z_{loc} , ϕ_{loc}) (cylindrical coordinates).
- Scattering data is sensitive to a particular turbulence wavenumber (k_R^{exp}, k_Z^{exp}) .

Preliminary Steps:

- Obtain experimental high-k density fluctuation data $\rightarrow |\delta n_e|^2_{kR,kZ}(\omega)$
- Use a ray tracing code to determine:
 - Scattering location + resolution \rightarrow (R_{loc}, Z_{loc}) + (Δ R_{loc}, Δ Z_{loc}).
 - Wavenumber response + resolution $\rightarrow (k_R^{exp}, k_Z^{exp}) + (\Delta k_R^{exp}, \Delta k_Z^{exp}).$
- Run a nonlinear gyrokinetic simulation (used GYRO here) capturing scattering location + resolving experimentally measured wavenumber.

Summary Steps to Implementing a Synthetic High-k Scattering Diagnostic using GYRO

Steps in synthetic diagnostic implementation

Coordinate Mapping:

Coordinate mapping GYRO (r, θ , ϕ) Wavenumber mapping (k_r ρ_s ,k_{θ} ρ_s)_{GYRO}

- Compute (r_{loc}, θ_{loc}) by nonlinear solve of { $R(r_{loc}, \theta_{loc}) = R_{loc}, Z(r_{loc}, \theta_{loc}) = Z_{loc}$ }.
- Compute (k_r, k_{θ}) -grid (GYRO coordinates).
- Compute $(k_r^{exp}, k_{\theta}^{exp})$ by mapping from (k_R^{exp}, k_Z^{exp}) .
- Filtering: Apply instrumental selectivity function to simulated density fluctuations
 - Define selectivity function on local grid (k_r , k_θ)-grid (*cf.* Mazzucato PoP 2003, PPCF 2006).
 - Interpolate δn_e to obtain fluctuation spectrum in (k_{θ_i}, k_r) -grid.
 - Apply (k_r, k_{θ}) filtering to $\delta n_e \rightarrow synthetic signal <math>\delta n_e(t) \rightarrow \delta n_e^{syn}(\omega)$.

In this poster, will only focus on Mapping. Filtering is part of ongoing work.

Prerequisites to Coordinate Mapping

We want to perform:

- coordinate mapping GYRO (r,θ,φ)
- wavenumber mapping $(k_r \rho_s, k_{\theta} \rho_s)_{GYRO}$

Prerequisites

- Units: r[m], R[m], Z[m], $\theta, \phi \in [0,2\pi]$
- GYRO definition of k_{θ}^{loc} and k_{θ}^{FS}

$$k_{\theta}^{loc}(r,\theta) = -\frac{n}{r}\frac{\partial v}{\partial \theta}, \quad k_{\theta}^{FS} = \frac{nq}{r}$$

Consistent with GYRO definition of flux-surface averaged k_{θ}^{FS} =nq/r (*cf.* backup)

Wavenumber mapping under simplifying assumptions

$$k_{R} = (k_{r}\rho_{s})_{GYRO} \left|\nabla r\right| / (\rho_{s})_{GYRO}$$

$$k_{Z} = (k_{\theta}\rho_{s})_{GYRO}^{loc} / (\kappa.\rho_{s})_{GYRO}$$

- Miller-like parametrization
- $\zeta=0$, $d\zeta/dr=0$ (squareness)
- $Z_0=0$, $dZ_0/dr=0$ (elevation)
- UD symmetric (up-down symmetry) →(θ=0)

Mapping
$$(R, Z, \varphi) \rightarrow (r, \theta, \varphi)$$

 $(k_R, k_Z) \rightarrow (k_r, k_\theta)$

Jacobian transformation + definitions of k_R , k_Z , k_r , k_θ

$$\begin{pmatrix} \frac{\partial}{\partial r} \\ \frac{\partial}{\partial \theta} \\ \frac{\partial}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \frac{\partial R}{\partial r} & \frac{\partial Z}{\partial r} \\ \frac{\partial R}{\partial \theta} & \frac{\partial Z}{\partial \theta} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial R} \\ \frac{\partial}{\partial Z} \\ \frac{\partial}{\partial Z} \end{pmatrix} + \begin{cases} ik_R = \frac{\partial}{\partial R}, \quad ik_Z = \frac{\partial}{\partial Z} \\ ik_r = \frac{\partial}{\partial r}, \quad ik_{\theta}^{loc} = \frac{1}{r} \frac{\partial}{\partial \theta} \end{cases}$$

$$\square \square \square \left\{ \begin{array}{c} k_r = k_R \frac{\partial R}{\partial r} + k_Z \frac{\partial Z}{\partial r} \\ k_{\theta}^{loc} = k_R \frac{1}{r} \frac{\partial R}{\partial \theta} + k_Z \frac{1}{r} \frac{\partial Z}{\partial \theta} \end{array} \right.$$

- Need to compute $\partial R/\partial r$, $\partial R/\partial \theta$, $\partial Z/\partial r$, $\partial Z/\partial \theta$ @ (r_{loc} , θ_{loc})
- Will obtain $(k_r, k_{\theta})_{exp}$ in GYRO coordinates!

Complete GYRO-Real Space Wavenumber Mapping

The complete wavenumber mapping is

$$k_r = k_R \frac{\partial R}{\partial r} + k_Z \frac{\partial Z}{\partial r}$$

$$k_{\theta}^{loc} = k_R \frac{1}{r} \frac{\partial R}{\partial \theta} + k_Z \frac{1}{r} \frac{\partial Z}{\partial \theta}$$

- Derivatives are computed at (r_{loc}, θ_{loc}) , and $k_R = k_R^{exp}$, $k_Z = k_Z^{exp}$ (determined by ray-tracing calculations).
- This mapping reduces to simplified mapping in slide 15 for θ =0+UD sym.
- Computed GYRO Geometric Coefficients (∂R/∂r, ...) agree with GYRO output.

Given from experiment (ray tracing) $k_R = -1857 \text{ m}^{-1}, k_Z = 493 \text{ m}^{-1}$ (channel 1 of high-k diagnostic)

Get from GYRO (internally calculated)

- $(\rho_s)_{GYRO} \sim 0.002 \text{ m} (B_unit \sim 1.44)$
- |∇r| ~ 1.43, κ ~ 2

Apply mapping (simplified approx.)

$$\begin{cases} (k_r \rho_s)_{GYRO} = k_R * (\rho_s)_{GYRO} / |\nabla r| \\ (k_\theta \rho_s)_{GYRO}^{loc} = k_Z * \kappa * (\rho_s)_{GYRO} & \text{cf. slide 15} \end{cases}$$

Obtain experimental wavenumbers mapped to GYRO

$$(k_r \rho_s)_{GYRO} \sim -2.6$$

 $(k_\theta \rho_s)_{GYRO} \sim 2.0$

Mapped (k_R, k_Z)^{exp} to GYRO (k_r ρ_s , k_{θ} ρ_s)_{GYRO}

 (k_r, k_{θ}) mapping in a high-resolution, e- scale GYRO simulation of real NSTX plasma discharge (141767).

• Red dots: (k_r, k_{θ}) assume $\theta_{loc}=0$ approx (*cf.* slide 15,18).

$$\begin{cases} (k_r \rho_s)_{GYRO} = k_R * (\rho_s)_{GYRO} / |\nabla r| \\ (k_{\theta} \rho_s)_{GYRO}^{loc} = k_Z * \kappa * (\rho_s)_{GYRO} \end{cases}$$

- Blue dots: (k_r, k_θ) θ=θ_{loc}
 (~-0.06 rad) (complete mapping)
- Ellipses are e⁻¹ and e⁻² amplitude of (k_r, k_θ) gaussian filter (simplified selectivity function)

$$F(k_r, k_{\theta}) = F_r(k_r) F_{\theta}(k_r)$$
$$F_r(k_r) = \exp\left(-(k_r - k_r^{\exp})^2 / \Delta k_r^2\right)$$
$$F_{\theta}(k_{\theta}) = \exp\left(-(k_{\theta} - k_{\theta}^{\exp})^2 / \Delta k_{\theta}^2\right)$$

Resolving (k_R,k_Z)^{exp} + Complete ETG Spectrum Requires a Big-Simulation-Domain e- Scale Simulation

- Resolve full ETG spectrum $\rightarrow (k_{\theta}\rho_s^{FS})^{max} \sim 43$.
- Radial overlap with scattering beam width \rightarrow L_r~8 cm (L_r~21 ρ_s)
- Resolve e- scale turbulence eddies $\rightarrow \Delta r \sim 2\rho_{e}$.

- Spectra show well resolved $(k_R, k_Z)^{exp}$ and ETG spectrum (*cf.* slide 22).
- Experimental wavenumbers produce non-negligible δn_e and Q_e consistent with previous e- scale simulation results ($Q_e \sim 0.4$ MW).

A Big-Simulation-Domain Electron Scale Simulation Was Performed to Apply New Synthetic Diagnostic

- Outboard mid-plane δn_e(R, Z) in high resolution e- scale GYRO simulation of real NSTX plasma discharge.
- Shot 141767, time t = 398 ms (*cf.* Ruiz Ruiz PoP 2015).
- Scattering location and scattering volume extent are within GYRO simulation domain.
- Dots are scattering location for channels
 1, 2, and 3 of high-k diagnostic.
- Dashed circles are 3cm and √2*3 cm microwave beam radii (for channel 1).

R (m)

Mapped Experimental Wavenumbers in GYRO Density Spectra

- Black dots: scattering (k_r, k_θ)^{exp} for channels 1,2,3 (note in these figures, spectrum is output at θ=0, and black dots correspond to θ~-0.06 rad).
- Ellipses: e^{-1} and e^{-2} amplitude of (k_r, k_{θ}) gaussian filter (simplified selectivity function).

Numerical Resolution Details of Ion and Electron Scale Simulations Presented

Experimental profiles used as input

Local, flux tube simulations performed at scattering location (r/a~0.7, R~136 cm).

- Only electron scale turbulence included.
- Experimental T_e, n_e, T_i, rotation, etc.
- 3 kinetic species, D, C, e (Z_{eff}~1.85-1.95)
- Electromagnetic: $A_{\parallel}+B_{\parallel}$, $\beta_e \sim 0.3$ %.
- Collisions ($v_{ei} \sim 1 c_s/a$).
- ExB shear (γ_{E} ~0.13-0.16 c_s/a) + parallel flow shear (γ_{p} ~ 1-1.2 c_s/a)
- Fixed boundary conditions with $\Delta^{b} \sim 8/1.5 \rho_{s}$ buffer widths (ion/e- scale).

lon scale resolution parameters

- $L_r \times L_y = 74 \times 56 \rho_s (L/a \sim 0.4)$.
- $n_r x n = 192 x 14$.
- $k_{\theta} \rho_s^{FS}$ [min, max] = [0.1, 1.4]
- k_rρ_s [min, max] =[0.85, 4]
- $[n_{\parallel}, n_{\lambda}, n_{e}] = [14, 12, 12]$

<u>Big-box e- scale</u> resolution parameters

- $L_r \times L_y = 21 \times 21 \rho_s (L/a \sim 0.16)$.
- $n_r x n = 512 x 142$.
- $k_{\theta}\rho_{s}^{FS}$ [min, max] = [0.3, 43]
- $k_r \rho_s$ [min, max] = [0.3, 38]
- $[n_{\parallel}, n_{\lambda}, n_{e}] = [14, 12, 12]$
- High-resolution electron scale runs presented here are NOT multiscale:
- Ions are not resolved correctly $\Delta k_{\theta} \rho_s \sim 0.3$, $L_r \propto L_v = 21 \times 21 \rho_s$.
- Simulation ran only for electron time scales ($\sim 20a/c_s$), ions are not fully developed.

Summary and Future Work on Synthetic Diagnostic Implementation

<u>Summary</u>

- Completed coordinate transformation and wavenumber mapping from GYRO space to real space.
- A big-box electron scale simulation is needed to simultaneously resolve full ETG spectrum and experimental wavenumbers in old high-k system.
- Experimental wavenumbers produce non-negligible δn_e and Q_e , consistent with previous e- scale simulation predictions.

Future work

- Implementation of selectivity function and filtering → quantitative comparisons with experiment!
- Project operating space of new high-k diagnostic.
- Study turbulence characteristics in high-resolution e- scale run → towards multiscale simulation in NSTX-U.

This work is supported by US. D.O.E. Contract No. DE-AC02-09CH11466. Computer simulations were carried out at the National Energy Research Scientific Computing Center, US. D.O.E. Contract No. DE-AC02-05CH11231.

Back-up slides

Numerical Resolution Comparison with Traditional Ion Scale, Electron Scale and Multiscale Simulation

Poloidal wavenumber resolution ($k_{\theta}\rho_{s}$ here means $k_{\theta}\rho_{s}^{FS}$)

	$\Delta k_{\theta} \rho_s$	$k_{\theta} \rho_s^{max}$	n #tor. modes
lon scale	~0.05	~1	~20-30
e- scale	~1-1.5	~50	~50
Multi-scale	~0.1	~40	~500
High res. e- scale	0.3	43	142

Radial resolution Δr – radial box size L_r

	Δr	L _r	n _r radial grid
lon scale	$\sim 0.5 \ \rho_s$	~80-100 ρ _s	~ 200
e- scale	~ 2 p _e	~ 6-8 ρ _s	~ 200
Multi-scale	~ 2 p _e	~ 40-60 ρ _s	~ 1500
High res. e- scale	2.5 ρ _e	20 ρ _s	512

Input Parameters into Nonlinear Gyrokinetic Simulations Presented

	t=398 t	= 565			
r/a	0.71	0.68	R _o /a	1.52	1.59
a [m]	0.6012	0.596	SHIFT =dR ₀ /dr	-0.3	-0.355
n _e [10^19 m-3]	4.27	3.43	ΚΑΡΡΑ = κ	2.11	1.979
T _e [keV]	0.39	0.401	s _k =rdln(κ)/dr	0.15	0.19
a/L _{ne}	1.005	4.06	DELTA = δ	0.25	168
a/L _{Te}	3.36	4.51	s _δ =rd(δ)/dr	0.32	0.32
β_e^{unit}	0.0027	0.003	Μ	0.2965	0.407
a/L _{nD}	1.497	4.08	γ_{E}	0.126	0.1646
a/L _{Ti}	2.96	3.09	γ _ρ	1.036	1.1558
T _i /T _e	1.13	1.39	ρ*	0.003	0.0035
n _D /n _e	0.785030	0.80371	λ _D /a	0.000037	0.0000426
n _c /n _e	0.035828	0.032715	c _s /a (10 ⁵ s-1)	4.4	2.35
a/L _{nC}	-0.87	4.08	Qe (gB)	3.82	0.0436
a/L _{TC}	2.96	3.09	Qi (gB)	0.018	0.0003
Z _{eff}	1.95	1.84			
nu _{ei} (a/c _s)	1.38	1.03			
q	3.79	3.07			
S	1.8	2.346			

Mapping $(k_r \rho_s, k_\theta \rho_s)_{GYRO} \rightarrow (k_R, k_Z)^{exp}$

We want to perform:

- coordinate mapping GYRO (r, θ, φ)
- wavenumber mapping $(k_r \rho_s, k_{\theta} \rho_s)_{GYRO}$

Preamble 1

- Units: r[m], R[m], Z[m] $\theta, \phi \in [0,2\pi]$
- GYRO definition of k_{θ}^{loc} and k_{θ}^{FS}

$$ik_{\theta}^{loc}(r,\theta) = \frac{1}{r}\frac{\partial}{\partial\theta} \Longrightarrow k_{\theta}^{loc}(r,\theta) = -\frac{n}{r}\frac{\partial\nu}{\partial\theta}$$
 (To be shown in slide 17)

 $\leftarrow \rightarrow$ physical (R, Z, φ)

 $\leftarrow \rightarrow (k_R, k_7)$

Consistent with GYRO definition of flux-surface averaged $k_{\theta}^{FS}=nq/r$ (*cf.* out.gyro.run)

$$k_{\theta}^{FS} = \frac{1}{2\pi} \int_{0}^{2\pi} k_{\theta}^{loc} d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} -\frac{n}{r} \frac{\partial v}{\partial \theta} d\theta = \left(-\frac{n}{r}\right) \frac{v(r, 2\pi) - v(r, 0)}{2\pi} = \frac{nq(r)}{r}$$

Mapping $(k_r \rho_s, k_\theta \rho_s)_{GYRO} \rightarrow (k_R, k_Z)^{exp}$

Preamble 2 why is
$$k_{\theta}^{loc}(r,\theta) = -\frac{n}{r} \frac{\partial v}{\partial \theta}$$
 ??

GYRO decomposition of fields

$$\delta\phi(r,\theta,\alpha) = \sum_{j=-Nn+1}^{Nn-1} \delta\hat{\phi}_n(r,\theta) e^{-in\alpha} e^{in\overline{\omega}_0 t} = \sum_{j=-Nn+1}^{Nn-1} \delta\phi_n(r,\theta), \quad \alpha = \varphi + \nu(r,\theta)$$

Set φ =0 and ω_0 = 0. Focus on transformation of one toroidal mode n. By definition of k_{θ}^{loc}

$$ik_{\theta}^{loc}\delta\phi_{n}(r,\theta) = \frac{1}{r}\frac{\partial}{\partial\theta}(\delta\phi_{n}(r,\theta)) = \frac{1}{r}\frac{\partial}{\partial\theta}(\delta\hat{\phi}_{n}(r,\theta)e^{-inv(r,\theta)}) = \frac{1}{r}\frac{\partial}{\partial$$

$$\frac{1}{r} \left(\frac{\partial \delta \phi_n}{\partial \theta} e^{-inv} + \delta \hat{\phi}_n \left(-in \frac{\partial v}{\partial \theta} \right) e^{-inv} \right) \Longrightarrow \delta \phi_n(r,\theta) \left(\frac{-in}{r} \frac{\partial v}{\partial \theta} \right)$$

Conclusion: we assume definition of k_{θ}^{loc} is **correct**. There is a one-to-one relation between n and k_{θ}^{loc} .

$$k_{\theta}^{loc}(r,\theta) = -\frac{n}{r}\frac{\partial v}{\partial \theta}$$

Mapping $(k_r \rho_s, k_\theta \rho_s)_{GYRO} \rightarrow (k_R, k_7)^{exp}$

Preamble 3 Wavenumber mapping under simplifying assumptions

$$k_{R} = (k_{r}\rho_{s})_{GYRO} \left|\nabla r\right| / (\rho_{s})_{GYRO}$$

$$k_{Z} = (k_{\theta} \rho_{s})_{GYRO}^{loc} / (\kappa . \rho_{s})_{GYRO}$$

- Assumptions
 - $-\zeta=0$, d ζ /dr=0 (squareness + radial derivative)
 - $Z_0 = 0$, $dZ_0/dr = 0$ (elevation + radial derivative)
 - UD symmetric (up-down asymmetry of flux surface)
- In the following slides, develop mapping when assumptions are not satisfied, invert

$$(R(r,\theta),Z(r,\theta))=(R_{exp}, Z_{exp}) \rightarrow (r_{exp},\theta_{exp})$$

Principle of Geometric Mapping is Independent of Flux Surface Parametrization

- Computation of metric coefficients
- Whether you use a Model Grad-Shafranov equilibrium (GS, Miller-type) or a general equilibrium (Fourier), procedure is the same.
- In cases shown here, I use GS equilibrium.
 - In GYRO simulation, I use input parameters THETA_PLOT=8, THETA_MULT=128 (fine poloidal grid).
 - Get r[m] from out.gyro.profiles (use a_{ref} !!)
 - − Create a θ array \in [0,2π], size THETA_PLOT*THETA_MULT+1=1025.
 - Define $R(r,\theta)$ and $Z(r,\theta)$ (GS or general eq.). Used GS equilibrium here:

$$R(r,\theta) = R_0(r) + r * \cos(\theta + \arcsin(\delta(r))\sin(\theta)) \quad [m]$$

$$Z(r,\theta) = Z_0(r) + r * \kappa(r) * \sin(\theta + \zeta(r)\sin(2\theta)) \quad [m]$$

How am I sure that these derivatives are computed correctly?
 →Comparisons with output from out.gyro.geometry_arrays!

Computed GYRO Geometric Coefficients agree with GYRO output

Conclusion: Agreement between output from out.gyro.geometry_arrays and computed coefficients gives us confidence the mapping is being performed correctly.

Poloidal Cross Section of High-Resolution Electron Scale Simulation

58th Annual Meeting of the APS Division of Plasma Physics, Oct 31-Nov 4, San Jose, California

Linear Growth Rates for Low-k and High-k Turbulence

- Note ion propagating high-k mode + electron propagating, non-balloning mode at krho~12.
- Microtearing turbulence?

k_A resolution in synhk GYRO sim.

Huge e- scale run for syn hk (tested it in debug! \rightarrow 1h30m for 1 a/cs)

16,488 cores, ~ 24h, 4 open MP threads(4x4,032cores), Edison (x1.2) →500,000 h (400,000h)

Run for 20 a/cs

Distribution points 495,452,160

NSTX-U

58th Annual Meeting of the APS Division of Plasma Physics, Oct 31-Nov 4, San Jose, California

Appendix: Compute $(\Delta k_R, \Delta k_Z)$ $\rightarrow (\Delta k_r \rho_s, \Delta k_\theta \rho_s)^{GYRO}$

Assume $\Delta k_R = \Delta k_Z = \Delta k = 66.7 \text{ m}^{-1}$

$$\begin{bmatrix} k_r = k_R \frac{\partial R}{\partial r} + k_Z \frac{\partial Z}{\partial r} \\ rk_\theta = k_R \frac{\partial R}{\partial \theta} + k_Z \frac{\partial Z}{\partial \theta} \end{bmatrix} \Rightarrow \begin{bmatrix} (\Delta k_r)^2 = (\Delta k_R)^2 \left(\frac{\partial R}{\partial r}\right)^2 + (\Delta k_Z)^2 \left(\frac{\partial Z}{\partial r}\right)^2 \\ (\Delta k_\theta)^2 = (\Delta k_R)^2 \left(\frac{1}{r} \frac{\partial R}{\partial \theta}\right)^2 + (\Delta k_Z)^2 \left(\frac{1}{r} \frac{\partial Z}{\partial \theta}\right)^2 \end{bmatrix}$$

This assumes beam radius a = 3cm, such that $\Delta k = 2/a = 66.7 \text{ m}^{-1}$

As a first approximation, assume simplest selectivity function: gaussian is k_r and k_θ

$$F(k_r, k_{\theta}) = F_r(k_r) F_{\theta}(k_r)$$

$$F_r(k_r) = \exp\left(-(k_r - k_r^{\exp})^2 / \Delta k_r^2\right)$$

$$F_{\theta}(k_{\theta}) = \exp\left(-(k_{\theta} - k_{\theta}^{\exp})^2 / \Delta k_{\theta}^2\right)$$

Inverse Mapping $(k_R, k_Z) \rightarrow (k_r \rho_s, k_\theta \rho_s)^{GYRO}$

58th Annual Meeting of the APS Division of Plasma Physics, Oct 31-Nov 4, San Jose, California

Inverse Mapping $(k_R, k_Z) \rightarrow (k_r \rho_s, k_\theta \rho_s)^{GYRO}$

58th Annual Meeting of the APS Division of Plasma Physics, Oct 31-Nov 4, San Jose, California

Inverse Mapping $(k_R, k_Z) \rightarrow (k_r \rho_s, k_\theta \rho_s)^{GYRO}$

58th Annual Meeting of the APS Division of Plasma Physics, Oct 31-Nov 4, San Jose, California

Inverse Mapping $(k_R, k_Z) \rightarrow (k_r \rho_s, k_\theta \rho_s)^{GYRO}$

Appendix: Compute Inverse Derivatives

Start from the coordinate transformation

$$\begin{pmatrix} \delta R \\ \delta Z \end{pmatrix} = \begin{pmatrix} \frac{\partial R}{\partial r} & \frac{\partial R}{\partial \theta} \\ \frac{\partial Z}{\partial r} & \frac{\partial Z}{\partial \theta} \end{pmatrix} \begin{pmatrix} \delta r \\ \delta \theta \end{pmatrix} = J \begin{pmatrix} \delta r \\ \delta \theta \end{pmatrix} \implies \begin{pmatrix} \delta r \\ \delta \theta \end{pmatrix} = J^{-1} \begin{pmatrix} \delta R \\ \delta Z \end{pmatrix}$$

Additionally, we can write the inverse transformation

$$\begin{pmatrix} \delta r \\ \delta \theta \end{pmatrix} = \begin{pmatrix} \frac{\partial r}{\partial R} & \frac{\partial r}{\partial Z} \\ \frac{\partial \theta}{\partial R} & \frac{\partial \theta}{\partial Z} \end{pmatrix} \begin{pmatrix} \delta R \\ \delta Z \end{pmatrix}$$

Compute inverse matrix J⁻¹

$$J^{-1} = \frac{1}{\det J} \begin{pmatrix} \frac{\partial Z}{\partial \theta} & -\frac{\partial R}{\partial \theta} \\ -\frac{\partial Z}{\partial r} & \frac{\partial R}{\partial r} \end{pmatrix}, \quad \det J = \frac{\partial R}{\partial r} \frac{\partial Z}{\partial \theta} - \frac{\partial R}{\partial \theta} \frac{\partial Z}{\partial r}$$

* Recall dRdθ =0* Recall dZ/dr =0

Appendix: Compute Inverse Derivatives

We find

$\int \frac{\partial r}{\partial r}$	$1 \frac{\partial Z}{\partial Z}$
∂R	$\det J \ \overline{\partial \theta}$
∂r	$1 \partial R$
$\int \frac{\partial Z}{\partial Z}$	$\frac{1}{\det J} \frac{\partial \theta}{\partial \theta}$
$\left \partial \theta \right _{-}$	$1 \partial Z$
$\left \frac{\partial R}{\partial R}\right $	$\frac{1}{\det J} \frac{\partial r}{\partial r}$
$\partial \theta$	1 ∂R
$\left\lfloor \frac{\partial Z}{\partial Z} \right\rfloor$	$\frac{1}{\det J} \frac{\partial r}{\partial r}$

$$\det J = \frac{\partial R}{\partial r} \frac{\partial Z}{\partial \theta} - \frac{\partial R}{\partial \theta} \frac{\partial Z}{\partial r}$$

Steps:

Compute forward derivatives

Compute inverse derivatives

Complete (k_R,k_Z) mapping

Conclusions and Future Work on Synthetic Diagnostic

- Implement instrumental selectivity function and wavenumber filtering.
- **Goal**: a direct, quantitative comparison between experiment-GYRO simulation of e- scale turbulence.
 - Compare fluctuation spectrum high-k diagnostic/synthetic high-k.
 - Study energy transfer between different k's (different channels).
- Project operating space of new high-k diagnostic.
 - Are streamers predicted to be detected with the new high-k system?
- Study turbulence characteristics in high-resolution e- scale run → towards multiscale simulation in NSTX-U.
 - High-resolution electron scale runs presented here are NOT multiscale
 - lons are not resolved correctly $\Delta k_{\theta} \rho_s \sim 0.3$, $L_r \propto L_v = 21 \times 21 \rho_s$.
 - Simulation ran only for electron time scales ($\sim 20a/c_s$), ions are not fully developped.
 - In future, can apply synthetic high-k to multiscale simulation in NSTX-U.

This work is supported by US. D.O.E. Contract No. DE-AC02-09CH11466. Computer simulations were carried out at the National Energy Research Scientific Computing Center, US. D.O.E. Contract No. DE-AC02-05CH11231.

Title here

Column 1

Column 2

Intro

- First level
 - Second level
 - Third level
 - You really shouldn't use this level the font is probably too small

Here are the official NSTX-U icons / logos

NSTX Upgrade NSTX Upgrade NSTX-U NSTX-U National Spherical Torus eXperiment Upgrade **National Spherical Torus eXperiment Upgrade**

Instructions for editing bottom text banner

Go to View, Slide Master, then select top-most slide – Edit the text box (meeting, title, author, date) at the bottom of the page

Then close Master View

