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* Introduction

* Recent results on electron thermal transport in NSTX

— Micro-tearing turbulence in NSTX high-beta and high-
collisionality H-mode plasmas

—ETG turbulence in NSTX L and H-mode plasmas

— Fast-ion-driven Alfven eigenmodes in the core region of
NSTX high-power H-mode plasmas

 NSTX-U Plans for electron thermal transport
e Summary
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Spherical Tokamaks Have Some Significant
Advantages over Conventional Tokamak

 The low aspect ratio of spherical tokamaks leads to improved
limit than conventional tokamaks

— More compact and lower-cost future devices, e.g. Fusion
Nuclear Science Facility (FNSF) and power plant
* The effective shaping and/or strong ExB shear from
low aspect ratio lead to reduced ion-scale turbulence

— Neoclassical ion thermal transport and different confinement

scaling for H-mode plasmas ., ciic surface
Magnetic Field Line \
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NSTX Thermal Confinement Has Strong
Collisionality Scaling in H-mode Plasmas
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* lon transport is neoclassical, consistent with strong flow shear and strong
shaping

« The confinement scaling is determined by electron thermal transport
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Multiple Mechanisms should be Responsible
for Anomalous Electron Thermal Transport

« Different mechanisms needed to account for the alw
electron thermal transport T
— Different radial regions

= Core flat region (small gradient drive)
= Core gradient region (large gradient drive)

aXS anomalous

j Core
1 gradient
I region

Edge
region

= Edge region (steepest gradient, connection to SOL, e.g. H-mode pedestal)

— Different parametric regimes
= Large/small plasma beta/collisionality, magnetic shear, ExB shear, etc.

« Evidence exists for gradient driven electrostatic and electromagnetic

ballooning drift instabilities:
— Low-k (ion-scale): ITG/TEM/KBM/microtearing modes

]
- . ITG/TEM/KBM/microteari
— High-k (electron-scale): ETG modes —
— Turbulent ExB drift and magnetic flutter effects X ep. 10 500

 Fast ion driven Alfvenic eigenmodes found relevant

— GAE and/or CAE modes
— Alfvenic eigenmode induced electron drift orbit stochasticity

QUNSTX-U
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First nonlinear gyrokinetic simulation
of micro-tearing turbulence in high-
collisionality and high-beta H-mode

plasmas
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Microtearing Modes are Found to be Unstable
in Many High n" H-mode Discharges

* Microtearing dominates over r/a=0.5-0.8, k r,<1 (n{¥]5-70)
- Real frequencies in electron diamagnetic direction, w {¥] w., = (K rs)¥]

L) [¥]}(c /a)
B Eg%gﬂf)ﬁtl,_\’fotatf(lz d,ye to J%ﬂﬁ' Zei¥)3, (R/Lte)eritere~(1+Zer Te/Ti)
T+ »p » * NBI Eigenfunctions in “ballooning” space
Real frequencies Growth rates
o (c/a) Y (c/a) 0.5 prrrrrrr AEARAAA T Re[¢]
K o T A 05— - — —Im[¢]
E electron diamagnetic 1 i NSTX 120968A02 0.560 s ] 0.\,-.\7»(/‘/ W"
3 direction / = - ] : ’ ;
- ] 0.41 r/a=0.5 ] g ]
25¢ E [ ——06 N Y SN— L, I Lo
b 03 ——0.7 10 -5 0 5 10
- F ——038 0/n
1.5 i I A A
1F i 041 |- - - ImIA]
: 0.1+ 0.2 N -
0.5 I 0 —‘ﬂ s
-0.2 - 7
0 ] ] ] | 0 | P | Lo T IR ETL IR Livviiiais
0 02 04 06 038 1 0 0.2 04 06 0.8 1 -10 -5 0 5 10
keps keps 0/n

Linear GYRO simulations [Candy & Waltz, Phys. Rev. Lett. (2003); https://fusion.gat.com/theory/Gyro] using
local general equilibrium, kinetic ions (D+C) and electrons, collisions, fully electromagnetic
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First Successful Nonlinear Microtearing

Simulations for NSTX
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Near Linear Scaling of Transport with n_

Consistent with Experimental Scaling

10" . Non- Ilnear transport
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 As transport drops, a/L;, will increase (for fixed heat flux), at some point ETG
(TEM/KBM?) should become important

« This transition likely to determine limit of “favorable™ n. scaling
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ETG turbulence in NSTX L and H-mode
plasmas

=Core flat
|region Core
gradient
region
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A High-k Microwave Scattering System was Used to
Measure Electron-scale Turbulence in NSTX

2 | B
\
High-k turbulence measurement e o
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D.R. Smith, PhD thesis, 2009
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First Identification of ETG Turbulence in
NSTX RF-heated L-mode Plasmas

* The measured high-k turbulence is shown to be driven by electron
temperature gradient (Mazzucato et al., PRL 2008, NF 2009).

— In RF-heated helium L-mode plasma (1.2 MW, 5.5 kG, 700 kA)
— Fluctuation propagates in the electron diamagnetic direction

— Clear reduction in turbulence spectral power at lower electron
temperature gradient
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W.X. Wang et al., PoP (2015)
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ETG Turbulence can Produce Experimentally
Relevant Electron thermal Transport

» Significant ETG-induced contributions to anomalous A,
confirmed with global gyrokinetic code GTS

« Strong energy coupling to electron version of GAM (very
high-w ZF)

r/a=0.26 — NSTX # 124901
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Large ELM Event induces Density Profile
Steepening in the Core Region

ELM event | e« After the ELM event:

High-k measurement region
Shot=140620

— Large density gradient
developed in the high-k
measurement region.

— Electron temperature
gradient also increases

— Electron density has only a
moderate decrease

— Electron temperature
remains essentially constant

* No large MHD mode
appears before and

right after the ELM
event

— t=498 ms
-==t=531ms

—t=498 ms
---t=531ms

0
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Reduced ETG Turbulence Intensity and Electron Thermal
Transport is Observed with Density Profile Steepening

. Significant decrease in spectral powerin * Electron thermal diffusivity is

ELM event
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 See. Ren et al.,, PRL 2011, PoP 2012

* Density gradient stabilization of high-k turbulence further confirmed in J. Ruiz-Ruiz et
al., PoP 2015
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Nonlinear ETG Simulations Reproduce Observed
Dependence of Electron Transport on Density Gradient

« Experimental Q. is found to decrease after the ELM event with large density
gradient

« The same trend is found from nonlinear ETG simulations, but does not agree
quantitatively

Before ELM experlment

2F Nonlinear GYRO ETG
i simulations with: local
§1 5k general equilibrium,
= I After ELM kinetic ions an.d.

~ [ electrons, collisions,
o 1 -' electromagnetic, flow
\ - and flow shear
RN

2 nonlinear
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Trapped Electron Mode (TEM) Destabilized by Large
Density Gradient may Contribute to Transport

Before ELM, a 20-30% increase in a/L, is able to match the experimental Q,
After ELM, increasing a/L, by 40% after still cannot match experimental Q.

Large TEM-induced transport (~30 MW) is predicted after ELM without E

shear stabilization
Using experimental E
W

W

¥)B

B shear almost completely suppresses transport
does not require much residual transport to match experimental Q,
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ETG Turbulence Stabilization by Reversed Magnetic Shear
is Responsible for ITB Formation
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Fast-ion-driven Alfven eigenmodes In
the core region of NSTX high-power H-
mode plasmas
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Core T, Flattening in High-power NBI H-mode plasmas is
Observed to be Correlated with *AE Activities

f (MHz) 2 MW

» Core T, flattening
correlated with NBI power
— No simultaneous increase in

central T,

* Almost a factor of 10
increase in core A, (r/
a~0.2)

— A, calculated with TRANSP
power balance analysis

— Calculated neutron rate with
classical fast particle slowing-
down in good agreement with
measured neutron rate

* Increased *AE (GAE/CAE)
activity observed from 02040608 00 02 04 06 08

edge Mirnov measurement rla rla
D. Stutman et al., PRL (2009)
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ORBIT Guiding Center Code is Used to Simulate
GAE Effects on Electron Thermal Transport

GAE Model used in N. Gorelenkov Nucl. Fus. 2010
ORBIT calculations
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Decrease in *AE Activity Measured by BES Corresponds
with Peaking of Central Electron Temperature

BES Spectrogram, R ~ 114cm Mirnov Spectrogram
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* T, remains peaked even with large single mode (bulk *AEs still largely supressed)

* BES sensitivity to *AEs marginal at later times, density rise limits reflectometer data

& Need high-k core data to determine if high-k turbulence limits central T, gradient




Study of Electron Thermal Transport will Benefit
from Two New Capabilities of NSTX-U

Previous New
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THE=S- YN » Reduces v* > ST-FNSF values dale
to understand ST confinement f)\\ug:,?f,e

» X longer pulse-length _
* q(r,t) profile equilibration W

~&~ Thermal

) :
» Expect 2x higher T by doubling By, f— AN NSTx
lp, and NBI heating power g 'V ITER-like —
5 | scaling e ]

» Test non-inductive ramp-up 0.0] o s

Ve
Normalized e-collisionality v.* oc n,/ T2

1=093MA, Hipr=12, By=3, Br=10%, Br=1T, Pyg = 10MW, Pg- = 4MW

»q and flow profile control

from larger tangency e/ NGreenwald
. — 095
radius Rq,y Of 279 NBI 3 - 072
«2x higher CD efficiency a0)
> 100% non-inductive CD
2‘ Ryax [cm]
. 50, 60, 70,130
By @ o= ] AT ] 60, 70,120,130
| kT Lo 70,110,120,130
Present NBI New 2"d NBI 00 02 04 06 08 10




Improved Diagnostics on NSTX-U will Strongly
Support the Study of Electron Thermal Transport
»Anew FIR high-kg scattering | =57
system being designed at “
UC-Davis

— To be installed for FY17 run
campaign
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Improved Diagnostics on NSTX-U will Strongly
Support the Study of Electron Thermal Transport

* A new FIR high-k, scattering
system being designed at
UC-Davis

— To be installed for FY17 run
campaign

« ADBS/CPS system will be
installed for FY17 run
campaign

— Measure ion-scale turbulence
— Able to measure magnetic
fluctuations (CPS)

48 BES channels are now
available on NSTX-U
— 16 more than NSTX

Micro-tearing turbulence gyrokinetic simulation
y 4
4
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Summary

 NSTX has made significant progress towards
understanding anomalous electron thermal transport
— First nonlinear gyrokinetic simulation of microtearing turbulence

to produce experimental confinement scaling and transport in
NSTX H-mode plasmas

— ETG turbulence driving electron thermal transport in L and H-
mode plasmas, supported by linear and nonlinear gyrokinetic
simulations

—*AE-induced core Te flattening, consistent with electron
stochastic transport from ORBIT simulations; Alternative
mechanism of coupling CAE to KAW also presented

 Electron thermal transport will be the key part of the

transport and turbulence research plan for NSTX-U

—Ip ~2 MA, BT ~1 T, 2" NBI (~12 MW), a suite of turbulence
diagnostics, e.g. new high-k scattering system and DBS/CPS
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