



#### **Recent Progress in Understanding Electron Thermal Transport in NSTX and NSTX-U**

Y. Ren<sup>1</sup>, E. Belova<sup>1</sup>, W. Guttenfelder<sup>1</sup>, N. Gorelenkov<sup>1</sup>, S.M. Kaye<sup>1</sup>, E. Mazzucato<sup>1</sup>, W.X. Wang<sup>1</sup>, K. Tritz<sup>2</sup>, R.E. Bell<sup>1</sup>, B.P. LeBlanc<sup>1</sup>,
C.W. Domier<sup>3</sup>, D.R. Smith<sup>4</sup>, H. Yuh<sup>5</sup>, K.C. Lee<sup>6</sup>, and the NSTX-U Team 1. PPPL 2. JHU 3. UC-Davis 4. UW-Madison 5. Nova Photonics 6. NFRI

58th Annual Meeting of the APS Division of Plasma Physics, San Jose, California, October 31<sup>st</sup> - November 4<sup>th</sup>, 2016







# Outline

- Introduction
- Recent results on electron thermal transport in NSTX
  - Micro-tearing turbulence in NSTX high-beta and highcollisionality H-mode plasmas
  - ETG turbulence in NSTX L and H-mode plasmas
  - Fast-ion-driven Alfven eigenmodes in the core region of NSTX high-power H-mode plasmas
- NSTX-U Plans for electron thermal transport
- Summary



### Spherical Tokamaks Have Some Significant Advantages over Conventional Tokamak

- The low aspect ratio of spherical tokamaks leads to improved limit than conventional tokamaks
  - More compact and lower-cost future devices, e.g. Fusion Nuclear Science Facility (FNSF) and power plant
- The effective shaping and/or strong ExB shear from low aspect ratio lead to reduced ion-scale turbulence
  - Neoclassical ion thermal transport and different confinement scaling for H-mode plasmas Magnetic Surface





## **NSTX Thermal Confinement Has Strong Collisionality Scaling in H-mode Plasmas**



- Ion transport is neoclassical, consistent with strong flow shear and strong shaping
- The confinement scaling is determined by electron thermal transport

## Multiple Mechanisms should be Responsible for Anomalous Electron Thermal Transport

- Different mechanisms needed to account for the always anomalous electron thermal transport
  - Different radial regions
    - Core flat region (small gradient drive)
    - Core gradient region (large gradient drive)
    - Edge region (steepest gradient, connection to SOL, e.g. H-mode pedestal)
  - Different parametric regimes
    - Large/small plasma beta/collisionality, magnetic shear, ExB shear, etc.
- Evidence exists for gradient driven electrostatic and electromagnetic ballooning drift instabilities:



- Fast ion driven Alfvenic eigenmodes found relevant
  - GAE and/or CAE modes
  - Alfvenic eigenmode induced electron drift orbit stochasticity



## First nonlinear gyrokinetic simulation of micro-tearing turbulence in highcollisionality and high-beta H-mode plasmas





## Microtearing Modes are Found to be Unstable in Many High n<sup>\*</sup> H-mode Discharges

- Microtearing dominates over r/a=0.5-0.8, k<sub>q</sub>r<sub>s</sub><1 (n ≤ 5-70)</li>
- Real frequencies in electron diamagnetic direction, w w w<sub>\*e</sub> = (k<sub>q</sub>r<sub>s</sub>) (a/L<sub>n</sub>+a/L<sub>Te</sub>) (c<sub>s</sub>/a)
- ETG mostly stable due to larger  $Z_{eff} \boxtimes 3$ ,  $(R/L_{Te})_{crit,ETG} \sim (1+Z_{eff}T_e/T_i)$ B<sub>T</sub>=0.35 T, I<sub>p</sub>=700 kA, P<sub>NBI</sub>=4 MW



Linear GYRO simulations [Candy & Waltz, Phys. Rev. Lett. (2003); https://fusion.gat.com/theory/Gyro] using local general equilibrium, kinetic ions (D+C) and electrons, collisions, fully electromagnetic



## First Successful Nonlinear Microtearing Simulations for NSTX



🚺 NSTX-U

58th Annual Meeting of the APS Division of Plasma Physics, Y. Ren, November 2<sup>nd</sup>, 2016

## Near Linear Scaling of Transport with n<sub>e</sub> Consistent with Experimental Scaling



- As transport drops, a/L<sub>Te</sub> will increase (for fixed heat flux), at some point ETG (TEM/KBM?) should become important
- This transition likely to determine limit of "favorable" n\* scaling

# ETG turbulence in NSTX L and H-mode plasmas





58th Annual Meeting of the APS Division of Plasma Physics, Y. Ren, November 2<sup>nd</sup>, 2016

#### A High-k Microwave Scattering System was Used to Measure Electron-scale Turbulence in NSTX



D.R. Smith, PhD thesis, 2009

-1.0

X (m)

-0.5

0.0

-1.5

-2.0



# First Identification of ETG Turbulence in NSTX RF-heated L-mode Plasmas

- The measured high-k turbulence is shown to be driven by electron temperature gradient (Mazzucato et al., PRL 2008, NF 2009).
  - In RF-heated helium L-mode plasma (1.2 MW, 5.5 kG, 700 kA)
  - Fluctuation propagates in the electron diamagnetic direction
  - Clear reduction in turbulence spectral power at lower electron temperature gradient



58th Annual Meeting of the APS Division of Plasma Physics, Y. Ren, November 2<sup>nd</sup>, 2016

## **ETG Turbulence can Produce Experimentally Relevant Electron thermal Transport**

- Significant ETG-induced contributions to anomalous Â<sub>a</sub> confirmed with global gyrokinetic code GTS
- Strong energy coupling to electron version of GAM (very high- $\omega$  ZF)



## Large ELM Event induces Density Profile Steepening in the Core Region



- After the ELM event:
  - Large density gradient developed in the high-k measurement region.
  - Electron temperature gradient also increases
  - Electron density has only a moderate decrease
  - Electron temperature remains essentially constant
- No large MHD mode appears before and right after the ELM event



#### Reduced ETG Turbulence Intensity and Electron Thermal Transport is Observed with Density Profile Steepening

- Significant decrease in spectral power in electron-scale observed for  $k_{\perp}\rho_s \lesssim 10$
- Electron thermal diffusivity is decreased by a factor of ~2 after the ELM event



- See Y. Ren et al., PRL 2011, PoP 2012
- Density gradient stabilization of high-k turbulence further confirmed in J. Ruiz-Ruiz et al., PoP 2015

#### Nonlinear ETG Simulations Reproduce Observed Dependence of Electron Transport on Density Gradient

- Experimental Q<sub>e</sub> is found to decrease after the ELM event with large density gradient
- The same trend is found from nonlinear ETG simulations, but does not agree quantitatively





#### Trapped Electron Mode (TEM) Destabilized by Large Density Gradient may Contribute to Transport

- Before ELM, a 20-30% increase in a/L<sub>Te</sub> is able to match the experimental  $Q_e$
- After ELM, increasing a/L<sub>Te</sub> by 40% after still cannot match experimental  $Q_e$
- Large TEM-induced transport (~30 MW) is predicted after ELM without E B shear stabilization
- Using experimental E B shear almost completely suppresses transport
   M does not require much residual transport to match experimental Q<sub>e</sub>





# ETG Turbulence Stabilization by Reversed Magnetic Shear is Responsible for ITB Formation



## Fast-ion-driven Alfven eigenmodes in the core region of NSTX high-power Hmode plasmas





58th Annual Meeting of the APS Division of Plasma Physics, Y. Ren, November 2<sup>nd</sup>, 2016

#### Core T<sub>e</sub> Flattening in High-power NBI H-mode plasmas is Observed to be Correlated with \*AE Activities

- Core T<sub>e</sub> flattening correlated with NBI power
  - No simultaneous increase in central  $\rm T_e$
- Almost a factor of 10 increase in core Â<sub>e</sub> (r/ a~0.2)
  - $\hat{A}_{e}$  calculated with TRANSP power balance analysis
  - Calculated neutron rate with classical fast particle slowingdown in good agreement with measured neutron rate
- Increased \*AE (GAE/CAE) activity observed from edge Mirnov measurement





#### **ORBIT** Guiding Center Code is Used to Simulate **GAE Effects on Electron Thermal Transport**



#### Decrease in \*AE Activity Measured by BES Corresponds with Peaking of Central Electron Temperature



- T<sub>e</sub> remains peaked even with large single mode (bulk \*AEs still largely supressed)
- BES sensitivity to \*AEs marginal at later times, density rise limits reflectometer data
- Need high-k core data to determine if high-k turbulence limits central T<sub>e</sub> gradient

#### Study of Electron Thermal Transport will Benefit from Two New Capabilities of NSTX-U



Present NBI New 2<sup>nd</sup> NB



1.0

0.0

#### Improved Diagnostics on NSTX-U will Strongly Support the Study of Electron Thermal Transport

- A new FIR high-k<sub>θ</sub> scattering system being designed at UC-Davis
  - To be installed for FY17 run campaign





#### Improved Diagnostics on NSTX-U will Strongly Support the Study of Electron Thermal Transport

- A new FIR high-k<sub>θ</sub> scattering system being designed at UC-Davis
  - To be installed for FY17 run campaign
- A DBS/CPS system will be installed for FY17 run campaign
  - Measure ion-scale turbulence
  - Able to measure magnetic fluctuations (CPS)
- 48 BES channels are now available on NSTX-U
  - 16 more than NSTX



Micro-tearing turbulence gyrokinetic simulation



# Summary

- NSTX has made significant progress towards understanding anomalous electron thermal transport
  - First nonlinear gyrokinetic simulation of microtearing turbulence to produce experimental confinement scaling and transport in NSTX H-mode plasmas
  - ETG turbulence driving electron thermal transport in L and Hmode plasmas, supported by linear and nonlinear gyrokinetic simulations
  - \*AE-induced core Te flattening, consistent with electron stochastic transport from ORBIT simulations; Alternative mechanism of coupling CAE to KAW also presented
- Electron thermal transport will be the key part of the transport and turbulence research plan for NSTX-U
  - Ip ~2 MA, BT ~1 T, 2<sup>nd</sup> NBI (~12 MW), a suite of turbulence diagnostics, e.g. new high-k scattering system and DBS/CPS