

Initial Characterization of L-mode and H-mode Edge Turbulence in NSTX-U using Beam Emission Spectroscopy

Matt Kriete¹,

R. Fonck¹, W. Guttenfelder², G. McKee¹, D. Smith¹

¹University of Wisconsin–Madison, ²PPPL

58th APS-DPP Meeting San Jose, CA October 31 – November 4, 2016

Beam emission spectroscopy (BES) is used to study instabilities and ion gyroscale turbulence

- High spatiotemporal resolution turbulence measurements
 - Contribute to validating nonlinear simulations of transport required for designing future fusion facilities
 - Investigate unique features of turbulence at low aspect ratio
 - Study dynamics of the L-H transition
- ELM studies at Alfvénic timescales
 - Better understanding of ELM transport required to mitigate damage in future fusion devices
 - Nonlinear ELM dynamics play key role in ELM evolution
 - Common diagnostics cannot capture nonlinear, Alfvén-scale ELM dynamics

BES measures Doppler-shifted D_{α} emission from a deuterium heating beam

BES is sensitive to density fluctuations with $k_{\perp}\rho_i \leq 1.5$ down to $\delta n/n \approx 0.1\%$

N. Schoenbeck et al, RSI 81, 10D718 (2010)

D. Smith et al, RSI 83, 10D502 (2012)

NSTX-U WISCONSIN

- Sightline layout has wide coverage, but limited locations for correlation analysis
- Only subset of sightlines could be detected at once

Modular hardware design enables simple expansion

WISCONSIN

BES expanded and reconfigured for detailed 2D turbulence and instability studies

2D turbulence imaging

- Radial and poloidal dynamics of low-k turbulent eddies important for transport
- Velocimetry techniques extract flow fields from 2D density measurements
- Zonal flow and L-H dynamics
 - Role of shear flow in L-H transition
 - Stronger zonal flow drive predicted in ST
- Alfvén eigenmode/energetic particle mode structure and dynamics

NSTX-U sightlines provide detailed coverage of edge

Electronic noise eliminated

- 40/48 channels picked up noise at discrete frequencies
 Significant noise pickup for 32 channels, moderate for 8 more
- Fixed by changing ground configuration

NSTX-U

- Digitizer power supply noise coupled into system via ground loop

Digitizer sampling frequency mismatch debugged

- BES uses two D-TACQ ACQ132 digitizers ($f_s = 2 \text{ MHz}$)
 - Correlation analysis requires synchronized sampling of data
- 50 Hz f_s mismatch between digitizers
 - Solved by testing variety of triggering/software configurations

Replacement photodiode tested

- Detector photodiode discontinued, need replacement
 - High sensitivity at 656 nm (D_{α})
 - -Low capacitance at 40 V reverse bias
 - -Low dark current

NSTX-U

WISCONSIN

Electronic Design Automation (EDA) enables rapid prototyping and automated assembly

- Preamp design in KiCad EDA
 - Open source
 - Links together schematic, PCB layout, assembly instructions, and component distributors
- Easily test new photodiodes
- Future BES expansion to 64 channels at lower cost

Feasibility of high-speed impurity density measurements will be investigated

- High-speed, localized, multi-channel impurity measurements
 - Add new optical filters to BES detectors to isolate CX or impurity lines

- Explore impurity sources, transport, and dynamics
 - Impurity expulsion/accumulation in ELMy/ELM-free regimes
 - Characteristics of lithium, boron, carbon, and metal PFC sources
 - Connection between impurity transport and low-k turbulence

• Suitable CX or impurity lines must first be identified

Survey spectrometer utilizing existing BES sightlines to be deployed

- Measure beam emission manifold in NSTX-U
 - Determine intensity of carbon lines overlaping beam components
 - Provide data on line splitting for new E diagnostic¹
- Potential CX lines

 C-VI, O-VIII, Li-III, He-II
 Ne-X, AI-XI, Li-I, W-I
- Spectrometer specs
 - Focal length: ≈ 0.5 m
 - f-number: f/4-f/8

NSTX-U

– Spectral resolution: < 0.05 nm</p>

¹See Burke, NP10.57

BES detects turbulence where ITG and MTM are predicted unstable in NSTX-U L-mode discharges

NSTX-U

WISCONSIN

- Local, nonlinear GYRO simulations¹
 - $-\beta_N \approx 2 \rightarrow EM$ effects destabilize MTM
 - 204963 has lower $T_{i}/$ $T_{e},$ broader range where ITG is unstable

¹See W. Guttenfelder, GO6.4, (Tues AM)

Autopower spectra show increasing broadband fluctuation amplitudes toward the edge

Bimodal, counter-propagating turbulence is observed

APS-DPP, Initial Characterization of Turbulence in NSTX-U, D. M. Kriete, Nov 2 2016

Observations of ion-scale turbulence show some consistency with GK simulations

- Ion directed mode in 204551 shows up most clearly in region where simulation predicts $\gamma_{\text{ITG}} > \gamma_{\text{ExB}}$
- Turbulence amplitudes are higher in 204963, which has larger ITG growth rate and less ExB shear
- However, electron mode seen in region where MTM is predicted stable
 - Effects of edge-induced common-mode fluctuations will be investigated in future

BES detects fast dynamics of the L-H transition

APS-DPP, Initial Characterization of Turbulence in NSTX-U, D. M. Kriete, Nov 2 2016

Turbulence amplitudes decrease after L-H transition

In contrast to L-mode, H-mode exhibits unimodal turbulence in ion direction

Summary

- 2D BES fully operational for future run campaigns
- Spectrometer to be used to scope out emission spectrum for future fast impurity diagnostic
- L-mode plasmas show bimodal turbulence, consistent with GYRO simulations

– Observed ion directed mode consistent with ITG prediction

• After L-H transition, turbulence nature changes from electron to ion directed mode and amplitudes drop