



Comparison of simulated heat transport in NSTX via high frequency Alfvén eigenmode-induced electron orbit modification with TRANSP power balance modeling\*

N. A. Crocker (UCLA), K. Tritz (JHU), R. B. White, E. D. Fredrickson, N. N. Gorelenkov (PPPL)

58th Annual Meeting of the APS Division of Plasma Physics October 31 - November 4, 2016 San Jose, California

\*Supported by US DOE Contracts DESC0011810, DE-FG02-99ER54527 and DEAC0209CH11466





### Overview

- CAEs & GAEs candidates for core electron thermal transport in NSTX
- Structure and amplitude of CAE & GAE  $\delta n$  measured in high performance NSTX-U plasma
  - frequency and toroidal mode number measured via edge b-dot array
  - internal amplitude ( $\delta n$ ) measured with reflectometer array
  - CAEs and GAEs identified via local dispersion relations
- ORBIT simulates diffusivity ( $\chi_e$ ) from mode effects on  $e^-$  guiding center orbits in core ( $\Psi_N^{\frac{1}{2}} = 0.15$ ) of high performance plasma
- Simulated  $\chi_e$  from GAEs and CAEs (as shear modes) compared to TRANSP experimental transport analysis
- Simulated  $\chi_e$  less than inferred from experiment (TRANSP)
- Future work includes more accurate treatment of modes



#### Motivation: CAEs & GAEs candidates for core electron thermal transport in NSTX

- Anomalous  $\chi_e$  observed in core of NSTX beam heated plasmas
- Stochastization of e<sup>-</sup> guiding center orbits proposed to enhance χ<sub>e</sub>
  - compressional (CAE) & global (GAE)
    Alfvén eigenmodes excited by
    Doppler-shifted cyclotron resonance
    with beam ions [N. N. Gorelenkov, NF 2003]



– CAE & GAE activity correlates with enhanced  $\chi_e$  in core of H-mode NSTX beam heated plasmas

[D. Stutman, PRL 2009; K. Tritz, APS DPP 2010 Invited Talk; N. A. Crocker, PPCF 2011]



#### Structure and amplitude of CAE & GAE $\delta n$ measured in high performance plasma

- High frequency AEs observed in 6 MW beam-heated H-mode plasma
- Structure measured with reflectometer array
- Toroidal mode numbers (n) and frequencies (f) determined with edge B-dot array
- Modes identified using:
  - measured mode structures, f & n
  - local dispersion relations: CAE (compressional Alfvén):  $\omega^2 = k^2 V_A^2$ 
    - GAE (shear Alfvén):  $\omega^2 = k_{\parallel}^2 V_A^2$



• ORBIT  $\chi_e$  modeling with measured modes will be compared with experimental transport

# Toroidal mode numbers and frequencies determined with edge B-dot array

- Modes appear as peaks in  $\delta b$  spectrum
- *n* determined from  $\delta b$  measured by edge toroidal array of B-dot coils



– method: find *n* that minimizes  $\chi^2$ :

$$\chi^{2} \equiv 1 - \left| \sum_{\forall \phi} \delta b e^{-in\phi} \right|^{2} / \left( N_{\phi} \sum_{\forall \phi} |\delta b|^{2} \right)$$

 $N_{\phi}$ =10 is number of coils.

 Smallest coil spacing is 10° ⇒ can distinguish |n| ≤ 18





## Reflectometers provide radial array of measurements



55-75 GHz (not shown: horns modified to optimize for frequency range) • Two arrays: "Q-band" & "V-band"

-Q-band: 30, 32.5, 35, 37.5, 42.5, 45, 47.5 & 50 GHz -V-band: 55, 57.5, 60, 62.5, 67.5, 70, 72.5 & 75 GHz

- Arrays closely spaced (separated ~ 10° toroidal)
- Single launch and receive horn for each array
- Horns oriented perpendicular to flux surfaces ⇒ frequency array = radial array
- Cutoffs span large radial range in high density plasmas ( $n_0 \sim 1 7 \ge 10^{19} \text{ m}^{-3}$ ) n\_ and O-mode cutoff locations





58th APS DPP, San Jose, CA - "Simulation of CAE/GAE heat transport", N A. Crocker (11/2/2016)

## Reflectometers measure local density fluctuation in plasma

- Microwaves propagate to "cutoff" layer, where density high enough for reflection ( $\omega_p = \omega$ ) Microwave ("O-mode") propagation
  - Dispersion relation of "ordinary mode" microwaves:  $\omega^2 = \omega_p^2 + c^2 k^2$ ,  $\omega_p^2$  proportional to density  $(\omega_p^2 = e^2 n/\varepsilon_0 m_e)$
  - $\begin{array}{l} k \to 0 \text{ as } \omega \to \omega_{\rho}, \\ \text{microwaves reflect at } k = 0 \end{array}$
- Reflectometer measures path length changes of microwaves reflected from plasma

- 1.4 Reflection occurs at cutoff 1.2  $\omega_p^2/\omega^2 \propto \text{density}$ 0.3 = 0.6 0.4 0.2 0.5  $\mathbf{x/L}$  1 1.5
- phase between reflected and launched waves changes ( $\delta\phi$ )
- Wave propagation controlled by density  $\delta\phi$  depends on  $\delta n$



# $\delta n$ determined from reflectometer measurements using synthetic diagnostic

- Synthetic diagnostic used to model reflectometer response ( $\xi$ ) to  $\delta n$ 
  - WKB path length (L) approximation:

$$L = L_0 + \xi = \int_{edge}^{\omega_P^2(R) = \omega^2} \sqrt{1 - \omega_P^2(R) / \omega^2} dR$$
$$\omega_P^2 = \omega_{P0}^2 + \delta \omega_P^2 \propto n_0 + \delta n$$

- Perturbation modeled with *cutoff displacement* (*d<sub>c</sub>*):
  - $\delta \omega_{\mathrm{P}}^{2} \propto \delta \mathbf{n}(R) = \sum_{i} a_{i} d_{C,i}(R) \nabla n_{0}(R)$
  - Find  $a_i$  to minimize  $\chi^2 = \sum_i (\xi_{i,meas} - \xi_{i,fit}) / \sigma^2_{i,meas}$
- Fit sensitive to noise in  $\xi_{meas}$ gradient  $\Rightarrow$  smoothed  $\xi_{i,meas}$  used for inversion





#### Structure and amplitude of CAE & GAE $\delta n$ measured in high performance plasma





# ORBIT used to simulate effects of modes on electron guiding center orbits

• Uses realistic equilibrium B-field:

$$\begin{split} B &= \nabla \times (\psi \nabla \theta - \psi_p \nabla \zeta) = g \nabla \zeta + I \nabla \theta + \delta \nabla \psi_p \text{, and } \nabla \psi \\ q \nabla \psi_p \end{split}$$

 Includes time-dependent electromagnetic perturbations via perturbed vector and space potential:

**E**=-( $\partial_t \alpha$ **B**+∇φ), with φ chosen to ensure E<sub>||</sub>=0

• Equations of motion from Lagrangian formalism: 
$$\begin{split} L(\rho_{\parallel},\psi_{p},\theta,\zeta,\partial_{t}\rho_{\parallel},\partial_{t}\psi_{p},\partial_{t}\theta,\partial_{t}\zeta,t) = \\ [\psi+(\rho_{\parallel}+\alpha)I]\partial_{t}\theta + [(\rho_{\parallel}+\alpha)g-\psi_{p}]\partial_{t}\zeta - H \\ \text{where } H = \rho_{\parallel}{}^{2}B^{2}/2 + \mu B + \varphi, \text{ and } \rho_{\parallel} = v_{\parallel}/B \end{split}$$

[R. B. White, PPCF 2010]



## $\chi_e$ from GAEs simulated for 6 MW H-mode 141398, t = 0.58 sec

- Anomalous core  $\chi_e$  (~ 35 m<sup>2</sup>/s) in 6 MW H-mode (141398, t = 0.58 sec)
  - TRANSP experimental transport analysis
- $e^{-}$  guiding center orbit spreading simulated by ORBIT =>  $\chi_e$ 
  - initial isotropic thermal population (T<sub>e</sub> = 1 keV) at  $\Psi_{\rm N}^{\frac{1}{2}}$  = 0.15
  - B-field from experiment ( $B_{T0}$ =0.45 T)
  - no collisions
  - spreading =>  $D_e$ ,  $\chi_e = \frac{3}{2}D_e$
- 8 GAEs
  - $-\xi_{rms}$  ~ 0.4 mm
  - $-\omega = k_{||}V_A \Rightarrow |m| = 0 2$
  - poloidal+toroidal Fourier modes used



| <i>f</i> (kHz) | n  | m  | <i>ξ</i> (mm) |
|----------------|----|----|---------------|
| 383            | -8 | -2 | 0.1           |
| 393            | -7 | -1 | 0.11          |
| 401            | -8 | -2 | 0.13          |
| 436            | -7 | 0  | 0.12          |
| 491            | -8 | 0  | 0.06          |
| 515            | -7 | 1  | 0.21          |
| 563            | -6 | 2  | 0.05          |
| 567            | -8 | 1  | 0.25          |



# $\chi_e$ from GAEs in simulation much less than from experimental transport



- $\chi_e << 1 \text{ m}^2/\text{s}$  at experimental amplitude,  $\xi_{\text{expt}}$
- scaling study shows  $\chi_e$  sensitive to amplitude:  $\chi_e \propto \xi^{3.76}$
- need  $\xi = 10^*(\xi_{expt})$  for agreement with TRANSP

# Inclusion of CAEs as shear modes increases simulated $\chi_e$ , but still not enough

|                                                            | <i>f</i> (kHz) | n  | m  | <i>ξ</i> (mm) |
|------------------------------------------------------------|----------------|----|----|---------------|
| • 7 CAES (15 CAES+GAES)                                    | 602            | -5 | 4  | 0.31          |
| • $\delta n$ typically much larger for CAEs =>             | 633            | -4 | 5  | 1.23          |
| much larger $\xi$ needed to explain $\delta n$             | 648            | -1 | 8  | 1.05          |
| $-\xi_{m} \sim 1.8 \text{ mm} (CAEs+GAEs; 1.9 \text{ mm})$ | 695            | -5 | 5  | 0.26          |
| much lorger m needed                                       | 720            | 0  | 10 | 0.36          |
| ' much larger // needed                                    | 726            | -3 | 7  | 0.57          |
| $-\omega = k_{  }V_A =>  m  = 4-10$                        | 800            | -4 | 7  | 0.32          |
| $-8 m^2/c$ at $\epsilon$                                   |                |    |    |               |

- $\chi_e = 8 \text{ m}^2/\text{s}$  at  $\xi_{\text{expt,CAE+GAE}}$ 
  - expect 2 m<sup>2</sup>/s from just GAEs at comparable  $\xi_{rms}$ 
    - higher k<sub>||</sub> (or higher m) => more effective breaking of adiabatic constants of motion?
    - more modes = more stochastic?
- $\chi_e = 39 \text{ m}^2/\text{s} \sim \chi_e$ , expt at  $3^*(\xi_{\text{expt, CAE+GAE}})$
- Treatment as CAEs would probably give smaller  $\chi_e$ 
  - $-\xi \approx \delta n / \nabla n$  (GAE) vs.  $\xi \lesssim \delta n / k_{\theta}$  (CAE)
  - shallow core  $\nabla n$ :  $n/\nabla n \ll k_{\theta}$

### Conclusions

- CAEs & GAEs candidates for core electron thermal transport in NSTX
- Structure and amplitude of CAE & GAE  $\delta n$  measured in high performance NSTX-U plasma
- $\chi_e$  from GAEs simulated in core ( $\Psi_N^{\frac{1}{2}} = 0.15$ ) for high performance plasma
  - ORBIT used to simulate effects of modes on e<sup>-</sup> guiding center orbits
- $\chi_e$  from GAEs in simulation much less than from TRANSP experimental transport analysis
- Inclusion of CAEs as shear modes increases simulated  $\chi_e$ , but still not enough





- Implement more physically realistic poloidal structure – currently, poloidal Fourier modes assumed
  - $-k_{||}v_A$  and amplitude vary unphysically with poloidal position
- CAEs need to be included as compressional modes
  - compressional modes not fully implemented
  - ORBIT is currently being modified
- Simulation with eigenmodes from codes HYM, CAE3B, CAE



### **Requests for Copies**



58th APS DPP, San Jose, CA - "Simulation of CAE/GAE heat transport", N A. Crocker (11/2/2016)