

New microwave diagnostics to measure internal magnetic fluctuations, intermediate-k density fluctuations, and flows on NSTX-U*

T.L. Rhodes, Neal Crocker, Tony Peebles, Shige Kubota, Physics and Astronomy Dept, UCLA

> Presented at the 2016 APS-DPP Meeting Supported by US DOE Grant DE-FG02-99ER54527

New microwave diagnostics are being installed on NSTX-U addressing range of important physics topics

- Addresses multi-scale turbulence and transport, energetic particles, and pedestal turbulence and flows:
- Doppler backscattering for int-k ñ levels, mean and fluctuating flow, sheared flows, GAMs, ELM and EHO activity, with k_θρ_s=0.5–10, resolutions Δr≤1cm and Δt≤1µs.
- Cross-polarization scattering measurements of internal *B* cover broader range (k_θρ_s~0.2–17) with Δr~1cm, Δt=1µs. Addressing important instabilities including microtearing, ITG, TEM, KBM, lower-k ETG, and kinetic Alfvén waves.

Work supported by USDOE Grant DE-FG02-99ER54527.

Overview of new diagnostics

New mm-wave diagnostics

Diagnostic	Measurement Importance	NSTX-U Topical Science Groups
Cross Polarization Scattering (CPS)	 Measurement of magnetic fluctuations critically important in high beta NSTX-U ☑ Currently <u>no</u> local <i>B</i> in core ☑ Provides: four-channels of relative <i>B</i> (r), and frequency spectra 	 Transport and Turbulence Energetic particles
Core DBS Doppler Backscattering	 Intermediate-k ñ, flows, GAMs, core ★ Fills gap in k-space between BES and high-k scattering ★ Provides: four-channels relative ñ(r), ExB flows and sheared flows (no NBI necessary), frequency spectra, wavenumber spectra 	 Transport and Turbulence Energetic particles
Edge DBS Doppler Backscattering (future)	 Edge/pedestal int-k ñ, zonal flows, GAMs ☑ Fills gap in k-space between BES and high-k scattering ☑ Provides: 8-channels ñ(r), flows and sheared flows, GAM/zonal flows related to H-mode and L-H transition 	 Pedestal Structure and Control Transport and Turbulence
20 channel Reflectometer 4 New channels	AE mode structure, surface displacement, 20-channels covering edge to high density core	 Energetic particles Transport and Turbulence
NSTX-U	UCLA Diagnostics Systems on NSTX-U, T.L. Rhodes, Oct. 31, 2016	

New four-channel high-frequency DBS/reflectometer/CPS system probes high densities on NSTX-U

- Expands existing fluctuation reflectometer (from 16 to 20 channels)
- 81, 82.5, 85.5, and 87 GHz as shown

Example DBS and CPS results from other machines

Multi-channel DBS for int-k ñ, flow, and ExB velocity

- k_θρ_s ~ 0.5–10, and typical spatial and temporal resolutions Δr≤1 cm and Δt≤1µs
- Fills wavenumber gap between low-k BES and high-k forward scattering.
- Directly impacts testing and validation of codes/simulations

Time since ELM (ms) 10⁰ (b) DBS ñ 10^{-1} ower (a.u.) 10^{-2} CPS B_tilde 10-10 MAST 10^{-5} 2 Ω 4 6 8 10 Time since ELM (ms)

> First CPS on spherical tokamak, DBS ñ in deep core. Inter-ELM ñ, B_tilde behavior consistent with EM ETG [Hillesheim NF15]

DBS can contribute significantly to discovery science and validating simulations/models

DBS ñ and flow, DIII-D RMP, K, At this k-scale, ñ increases only when enough RMP-coil current is applied. [Mordjick NF12].

Core DBS ñ in DIII-D QH-mode – GYRO shows very good comparison to experiment identifying instability as density gradient driven TEM [Ernst PoP16]

Cross-polarization scattering (CPS) to measure internal magnetic fluctuations on NSTX-U

- Addresses key physics questions on existence and behavior of microtearing modes, KBM, EM ETG/DW behavior, etc. and possible affect on transport.
 - Especially important at higher β as EM effects are increasingly important.
- Measure internal B over broad wavenumber range k_θρ_s ~ 0.2–17; time, space resolutions (Δr≤1 cm, Δt≤1µs)
- Directly impacts testing and validation of codes/simulations

Inter-ELM B and \tilde{n} behavior very different on DIII-D

- Data from repeat shots
- Compare MAST data above, *B* and *n* behavior quite different from DIII-D

16-channel UCLA fluctuation reflectometer will be upgraded to twenty-channels

Physics of DBS and CPS measurements

DBS technique first introduced on ASDEX-U (Hirsch, PPFC01) and is now a widely used technique

- Scattering at k_s occurs according to Bragg scattering relation:

For $k_i \sim k_s$, can show that

 $k_{\tilde{n}} = 2k_i sin(\mathbb{X}/2)$, where \mathbb{X} is scattering angle

- Scattered signal is proportional to \tilde{n} at $k_{\tilde{n}}$ ± $\mathcal{K} k$ while Doppler shift is $\mathcal{K} \mathcal{K} = k_{\tilde{n}} V$
- Full wave calculation shows long wavelength propagating structure near cutoff
 - It is this structure that scatters from longer wavelength ñ.

Hirsch, PPCF 2001, Bulanin PPR 2000, Hennequin RSI 2004, Conway, PPCF 2008, Schmitz RSI 2008, Xiao PS&T 2008, Happel RSI 2009, Hillesheim NF 2015

CPS: Vector nature of magnetic fluctuations scatter electromagnetic probe beam into orthogonal polarization

- Lehner '89, Vahala '92
- Interaction of incident electric field *E_i* with magnetic fluctuation *B* results in a perturbed current *j*/2 which in turn generates a scattered electric field *E_s*

 $j\downarrow_2 \sim E_i \times B$

- Scattered field E_s is then detected, - E_s follows Bragg scattering relation for wavevector and frequency

 $k_i + k_B = k_s$ and $f_i + f_B = f_s$

- CPS measurements are challenging

 Small signal levels
 Polarization purity
 - -Aiming/crossed beams
 - -Wavenumbers probed
 - -Spatial localization

k_{incident}

DBS design provides for $k_{\theta}\rho_s$ range ~1–10

UCLA Diagnostics Systems on NSTX-U, T.L. Rhodes, Oct. 31, 2016

Important to match bi-normal k direction in plasma \rightarrow optimum toroidal matching for each launch angle

DBS signal level depends on toroidal launch angle φ , MAST, Hillesheim, PPCF15

- Optimum toroidal matching angle depends on launch angle, plasma parameters and shape
- Optimum toroidal angle is nearly the same for all frequencies at a given poloidal angle.
- Using NSTX H-mode and 3D GENRAY raytracing code.

Accessible range of DBS wavenumbers varies from $0-7 \text{ cm}^{-1}$

Design of DBS system and lab measurements

Quasi-optical design of DBS with remote control lens that changes launch angle

• X–Y displacement of lens induces independent angular displacements (poloidal and toroidal angles) of DBS probe beam

DBS quasi-optical system and electronics have been built and tested in laboratory

DBS source and receiver electronics

antenna

Probe beam measurements match desired Gaussian beam propagation code designs

UCLA Diagnostics Systems on NSTX-U, T.L. Rhodes, Oct. 31, 2016

Design of CPS system

CPS quasi-optical design with DBS launch/receive antenna and CPS receive antenna

- remote controlled polarizer.
- Not shown is X–Y remote motion control of the last lens.

CPS scattering: O- and X-mode radiation propagate differently due to the different indices of refraction

- CPS scattering from 87 GHz DBS probe beam (NSTX-U H-mode plasma).
- Blue is DBS probe beam,
- Red is backscattering O-mode and green is ~0° forward O-mode scattering.
- Arrows show propagation directions and red disks show scattering centers.

Very different magnetic wavevectors can be measured using different CPS receive angles

• The differences in magnitude of X and O-mode wavevectors illustrate differences in their respective indices of refraction.

(For diagrammatic purposes only, not to scale.)

Sources of error in measurements and mitigation techniques

- Tests of non-WKB effects.
- Mode mixing is expected to be significant if | k₀ - k_x| << |dN_i/dL|, Note x10 in |dN_i/dL|,
 - |k₀ k_x| >> |dN_j/dL| → non-WKB effects = resulting in mode mixing are negligible ^b/₅
 for these frequencies.
- Testing WKB assumption via comparison of | dN/dl|/k₀ and N² Note x10 in |dN_j/(dLk₀)| indicating that the WKB assumptions are satisfied for these frequencies.
- Using the NSTX-U H-mode plasma and 3D GENRAY raytracing
- Non-WKB effects and mode mixing not an issue for this plasma but must examine each condition individually

(continued) Sources of error in measurements and mitigation techniques

- Another potential error source in the CPS and DBS signals is due to probe beam having a non-zero wavevector component along the magnetic field B, ie k_{||} ≠ 0 (Faraday effect).
 - If the probe wave is launched with linear polarization but couples to the plasma with non-vanishing k_{\parallel} , then it is a superposition of the true X- and O-modes which are slightly elliptized again producing a source of contamination.
 - The necessity for toroidal steering discussed above in the context of optimal wavenumber or pitch angle matching will also serve to minimize this effect by reducing the k_{\parallel} component to near zero.
 - Also, if there is significant contamination due to this effect the CPS signal is expected to look very much like the DBS signal, again an indication of potential problems.
- In addition to the WKB testing above, each CPS/DBS dataset on NSTX-U will be compared to each other, magnitude and spectral shape, etc. to determine if there is a potential problem (DBS and CPS data on NSTX-U will be simultaneous).
 - While there is no reason, a priori, for B_tilde and ñ to be different, significant similarity is an indication to proceed cautiously.
 - experience has been that CPS is very different in its response to plasma parameters (e.g. response to beta), spectral shape, and magnitude as compared to the DBS data

New microwave diagnostics are being installed on NSTX-U addressing range of important physics topics

- Addresses multi-scale turbulence and transport, energetic particles, and pedestal turbulence and flows:
- Doppler backscattering for int-k ñ levels, mean and fluctuating flow, sheared flows, GAMs, ELM and EHO activity, with k_θρ_s=0.5–10, resolutions Δr≤1cm and Δt≤1µs.
- Cross-polarization scattering measurements of internal *B* cover broader range (k_θρ_s~0.2–17) with Δr~1cm, Δt=1µs. Addressing important instabilities including microtearing, ITG, TEM, KBM, lower-k ETG, and kinetic Alfvén waves.

Work supported by USDOE Grant DE-FG02-99ER54527.

UCLA is excited about the scientific prospects on NSTX-U

- Multi-field diagnostics for turbulence and transport studies, beam driven modes, transients (ELMs, EHO, etc.)
- Testing and validation of simulations and theory
- Cross-device experiments are facilitated by similar diagnostics (e.g NSTX-U and DIII-D).

