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• CAEs and GAEs have previously been linked to 
anomalous Te flattening in NSTX 

• 3D hybrid simulations of NSTX-like plasmas find a rich 
spectrum of high frequency (𝜔 < 𝜔𝑐𝑖) Alfvén modes for a 
wide range of fast ion parameters (v0/vA, 𝜆0)

• CAEs are strictly more stable than GAEs for v0/vA < 4 in 
simulations, consistent with the relative abundance of 
GAEs in experiment

• Co-GAEs seen in simulations are not often observed and 
analyzed in experiments 

• GAE frequencies vary significantly with beam parameters 
without clear corresponding changes in mode structure

• Initial comparisons of mode spectrum between experiment 
and simulations are indirect, yielding fair agreement

Overview
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CAE/GAE May Limit ST Performance

• High beam power NSTX 

discharges exhibit 

anomalously flat Te profiles

– Correlates with increased 

beam power, strong 

CAE/GAE activity 

• Vital to understand how 

properties of fast ion 

distribution affect excitation 

of these modes

– Anomalously low Te imperils 

future ST development

[Stutman, PRL 2009]

[Tritz, APS DPP 2012]
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Mutual properties 
– Typical frequencies: 𝜔𝑇𝐴𝐸 < 0.1𝜔𝑐𝑖 < 𝜔𝐶𝐴𝐸,𝐺𝐴𝐸 < 𝜔𝑐𝑖

– MHD modes radially localized between magnetic axis and LFS
 Both may have large compressional component near edge, making experimental 

classification challenging

– May be driven unstable by resonant energetic particles
 Regular resonance 𝜔 − 𝑘∥𝑣∥ = 0
 Doppler-shifted cyclotron resonance 𝜔 − 𝑘∥𝑣∥ = ±𝜔𝑐𝑖

 Most generally expressed 𝜔 − 𝑛 𝜔𝜙 + 𝑝 𝜔𝜃 = 𝑙〈𝜔𝑐𝑖〉

CAE/GAEs for the Uninitiated

Compressional AE (CAE)
a.k.a fast magnetosonic mode 

– Compressional polarization 

 𝛿𝑏 ≈ 𝛿𝑏∥ ≫ 𝛿𝐵⊥ ≈ 0

– Dispersion: 𝜔 ≈ 𝑘𝑣𝐴
– Mode converts to KAW at Alfvén 

resonance location 𝜔 = 𝜔𝐴 𝑟0

Global AE (GAE)

– Shear polarization 

 𝛿𝑏 ≈ 𝛿𝑏⊥ ≫ 𝛿𝐵∥ ≈ 0

– Dispersion: 𝜔 ≤ (𝑘∥𝑣𝐴)𝑚𝑖𝑛
– Exists below an extremum of the 

Alfvén continuum (e.g. near low 
magnetic shear)
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Theoretical Explanations for Te Flattening

• Enhanced electron 
transport due to orbit 
stochasticity induced by 
many overlapping GAE 
(and CAE?)
– Must generate 𝜒𝑒~10-50 m2/s 

to match inferred 
experimental rate 

• Energy channeling via 

mode conversion from 

core CAE (and GAE?) to 

edge KAW 

– Predicts up to ~0.5MW 

power deposition per 

eigenmode

[Gorelenkov, NF 2010] [Belova, PRL 2015]
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• Hybrid initial value code in 3D toroidal geometry 

• Single fluid MHD thermal plasma + particle fast ions 

• Full-orbit kinetic ions in 𝛿𝑓 numerical scheme

• Linear and nonlinear capabilities

– Linear simulations linearize fluid equations + evolve energetic 

particle weights along equilibrium trajectories

• Self consistently solves for equilibrium including 

energetic particle effects

• Typical run at NERSC: 100CPU x 10hrs = 1k CPUhrs

HYbrid MHD/Particle Code (HYM)
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Fast Ion Distribution Model
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Variety of Unstable Modes Found

• Most unstable: n=8-10 co-GAE, then n=5-8 cntr-GAE, then n=3-4 co-CAE
– Colored circles: linear growth rate of most unstable mode

– White circles: no unstable mode of any type 

• n = 1,2 modes are much different from CAE/GAE
– Much lower frequency, higher poloidal mode number
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• Both the number of unstable modes and the total amplitude of all unstable 
modes increase sharply with v0/vA

• Modes prefer large v⊥ (co-CAEs, cntr-GAEs) or v|| (co-GAEs) 
– Prediction: 𝜆0~0.5 should not lead to substantial Te flattening except at very large v0/vA

• Left: number of unstable toroidal harmonics at each point in phase space

• Right: 𝛾2 sum of unstable modes (approximation for total amplitude)

Number of Excited Modes in Phase Space
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Mode Spectrum Depends Strongly on n & v
0

• At each n, CAE and GAE modes appear at distinct frequencies

• Co-GAE seen in simulations at large |n| (>7) are yet to be 
thoroughly investigated experimentally 
– Weakly unstable near the boundary of realistic NSTX beam geometry

• Spectrum becomes much more rich as v0/vA increases past 4.5

1680 kHz 

1440 kHz 

1200 kHz 

960 kHz 

720 kHz 

480 kHz 

240 kHz 
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GAE Typically More Unstable than CAE

• Largest growth rates occur for n ~ 6 – 10

• GAE mostly co-rotating when injecting low 𝜆0 beam 
(tangential), counter-rotating for large 𝜆0 (perpendicular)

• Almost exclusively cntr-GAE for 2.5 < v0/vA < 4

• CAE are strictly more stable than GAE for v0/vA < 4
– Implications for Te flattening mechanism
 A difference in the amount of Te flattening near this value of v0/vA could 

indicate which type of mode (CAE vs GAE) is most responsible for the 
unexplained thermal energy transport
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• Opposite trends for cntr-GAEs (circles) and co-GAEs (squares)

• Are these true MHD modes or high frequency EPM?

• In contrast, CAE frequencies change only slightly 

GAE Frequencies Shift with 𝜆0 & v0
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• Approximate dispersion 𝜔 ≈ 𝑘∥𝑣𝐴 is excellent fit to n 
dependence of frequencies 
– Fit is much worse when using B,R on-axis vs B,R at mode location

• Cyclotron resonance 𝜔 − 𝑘∥〈𝑣∥〉 = − 𝜔𝑐𝑖 decent fit to v||
dependence of frequencies 
– Resonant v|| not necessarily near the injected v||

Co-GAE Dispersion and Resonance

n



14APS DPP 58, Jeff Lestz, 2016

• Approximate dispersion 𝜔 ≈ 𝑘∥𝑣𝐴 is very rough fit to n dependence in 
frequencies 
– 𝑘∥ = Τ(𝑛 − Τ𝑚 𝑞) 𝑅 ≈ Τ𝑛 𝑅 is worse approximation for cntr-GAEs than co-GAEs

due to lower n and higher m harmonics

• Cyclotron resonance 𝜔 − 𝑘∥〈𝑣∥〉 = 𝜔𝑐𝑖 captures qualitative v||
dependence of frequencies 
– Resonant v|| not necessarily close to the injected v||

Counter-GAE Dispersion and Resonance

n
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• Equilibrium solver is self-consistent  increasing v0/vA increases 
Jbeam/Jplasma, modifying the equilibrium. Must disentangle “equilibrium 
effects” from “EP phase space effects” on frequencies
– Method 1: Fix beam energy and vary beam density to make the equilibrium more MHD-

like without changing the energetic particle phase space

– Method 2: Remove energetic particles from equilibrium equations (no longer self 
consistent), fix beam density and vary beam energy to manipulate the EP phase space

• Large frequency changes are still observed when varying v0/vA with 
identical equilibria

𝜔𝐺𝐴𝐸 also Changes with Fixed Equilibrium

LEGEND

Self-consistent equilibrium, 

varying v0 with constant nb

Self-consistent equilibrium, 

varying nb with constant v0

NON self-consistent, 

“MHD-like” equilibrium, 

varying v0 with constant nb
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• Large and unexpected changes in frequency with changes 

in EP distribution is uncharacteristic of MHD modes

• Even when excluding EP effects on equilibrium, different 

EP distributions with the same equilibrium lead to large 

changes in frequency 

– Quantitatively described by resonance condition 

• Frequencies are usually near expected GAE freq. 

• Yet there are not always (or even typically?) clear and 

substantial modifications to the mode structure 

corresponding to these large changes in frequency 

• Are these modes more accurately regarded as high 

frequency energetic particle modes (EPM)? 

EPMs in Disguise?
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GAE resonances nicer in MHD equilibrium

• Resonances are often shifted from integers for GAEs simulated with self-
consistent equilibrium 
– In contrast, CAEs line up extremely well with integers
 Key physics difference; CAEs obey ordinary resonance 𝜔 = 𝑘∥𝑣∥ vs the more complicated Doppler-

shifted cyclotron resonances for the GAEs. 

• Incidental finding in non self-consistent simulations of GAEs: resonances 
are much better aligned with integers when beam effects are excluded from 
equilibrium
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Experimental vs Simulated Mode Spectrum

cntr-GAE

cntr-CAE

co-CAE

[Crocker, NF 2013]

[Fredrickson, PoP 2013]

1920 kHz 

1680 kHz 

1440 kHz 

1200 kHz 

960 kHz 

720 kHz 

480 kHz 

240 kHz 

• From TRANSP, realistic parameters for NSTX shot 141398 are 𝜆0 = 0.5 – 0.7, v0/vA = 4.75 – 5.25 

• Co-CAE agree with high frequency observations, disagree on direction at lower frequency range 

• Cntr-GAE simulations near but below experimental measurements

• Co-GAE not analyzed experimentally in this discharge
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Mode Spectrum Dependence on v
0
/v

A

[Tang & Crocker, 2016]

• Red/yellow/green points from experimental survey of 50ms intervals in NSTX 
discharges satisfying: 
– (1) Te > 500 eV, (2) <f> > 200 kHz, (3) -10 < <n> < -4 

• Blue marks: individual cntr-GAE modes from simulations

• Some qualitative agreement, but very preliminary – requires more direct comparison 
– Individual mode comparison can test simulation predicted stability boundaries in v0/vA
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Mode Spectrum Dependence on n

[Tang & Crocker, 2016]

• Red/yellow/green points from experimental survey of 50ms intervals in 
NSTX discharges satisfying: 
– (1) Te > 500 eV, (2) <f> > 200 kHz, (3) -10 < <n> < -4 

• Blue marks: individual cntr-GAE modes from simulations

• Reasonable agreement for |n| > 7, and correct trends along v0/vA contours 

• Also requires more direct comparison 
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Modes Saturate with

[Tang & Crocker, 2016]

• Nonlinear simulations of n = 4 CAE reveal 
– Consistent with saturation via particle trapping

• Experimental database shows                  when fitting all CAE/GAE modes 

• Hence power transferred to KAW scales 
– Very strong beam power dependence implies energy channeling should be strong 

effect in high power NSTX-U discharges
 Though CAE could be more stable in general due to larger nominal B0
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• Drive for 𝑙 = 0 resonance is proportional to 

𝛻𝐯Fb E, 𝜇 ∝
𝜕𝐹𝑏 𝐸,𝜇

𝜕𝐸
=

𝜕𝐹𝑏

𝜕𝐸
−

𝜆

𝐸

𝜕𝐹𝑏

𝜕𝜆
> 0 for instability

• Simulated Fb is slowing down in E, Gaussian in pitch

– First term is stabilizing for the entire phase space 

– Second term is stabilizing for 𝜆 < 𝜆0 and destabilizing for 

𝜆 >
𝜆0

2
1 + 1 +

8

3

Δ𝜆

𝜆0

2
≡ 𝜆𝑐𝑟𝑖𝑡

• Resonance condition 𝜔 = 𝑘∥𝑣∥ with approximate 

relation 𝑣∥ ≈ 𝑣 1 − 𝜔𝑐𝑖 𝜆 yield the resonant 𝜆:

– 𝜆𝑟𝑒𝑠 ≈
1

〈𝜔𝑐𝑖〉
1 −

𝜔2

𝑘∥
2𝑣2

Qualitative Co-CAE Stability Theory

[Belikov, PoP 2003]
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• 𝜆𝑟𝑒𝑠 > 𝜆𝑐𝑟𝑖𝑡 is a necessary condition for instability 

• Check against simulations with assumptions: 

– 𝜔𝑐𝑖 ≈ 0.9𝜔𝑐𝑖0 (good), 𝑘∥ ≈
𝑛

𝑅
(okay), 𝑣𝑟𝑒𝑠 ≈ 𝑣0 (unreliable) 

• CAEs in simulation usually satisfy this instability condition (predicts 
unshaded region to be unstable)

• Beilkov et. al. also claim v0/vA > 4 is necessary for co-CAEs to be 
preferentially driven by trapped particles – remarkably similar to the stability 
boundary demonstrated in these simulations (earlier slide) 

Unstable CAE Modes vs Theory

[Belikov, PoP 2004]
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• According to theory, 2 < 𝑘⊥𝜌𝑏 < 4 required for cntr-GAE instability with NSTX-like 
EP distributions 

• From dispersion, 𝑘⊥ ≈
𝜔

𝑣𝐴

𝑘⊥

𝑘∥
, hence 𝑘⊥𝜌𝑏 =

𝜔

𝜔𝑐𝑖

𝑣⊥

𝑣𝐴

𝑘⊥

𝑘∥
≈

𝜔

𝜔𝑐𝑖

𝑣0 〈𝜔𝑐𝑖〉𝜆0

𝑣𝐴

𝑘⊥

𝑘∥

• Unfortunately, Τ𝑘⊥ 𝑘∥ is not known for each mode, though it is expected to be much 
larger than 1 (usual tokamak limit) 

• Encouragingly, the other factors in 𝑘⊥𝜌𝑏 show a clustering in growth rates (left plot) 

• The inferred values of Τ𝑘⊥ 𝑘∥ necessary for the unstable modes to obey the 
theoretical instability conditions are generally Τ𝑘⊥ 𝑘∥ = 2 – 6 (right plot) 
– Challenging to verify because mode structure is not usually well-aligned with 𝜓 contours 

obfuscates poloidal mode number and thus expressions for 𝑘∥ and 𝑘⊥

Cntr-GAE Stability Theory

[Gorelenkov, NF 2003]
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• 3D hybrid simulations were performed for a wide range of 
beam parameters to investigate CAEs/GAEs in NSTX plasmas

• Cntr-GAEs have best overall agreement between simulations 
and experimental observations 

• Co-GAEs are observed in simulations to be quite unstable for 
very tangential beam distributions, but little experimental or 
analytic work exists on these modes 

• CAEs in simulation disagree with direction of propagation 
observed in experiment in moderate frequency band

• CAEs are more stable than GAEs for v0/vA < 4
– Implications for dominant mechanism of anomalous Te flattening 

• GAE frequencies depend strongly on beam parameters without 
clearly corresponding changes in mode strucure
– Quantitatively explained by GAE dispersion + resonance, but may be 

better described as a new, high frequency EPM?

Summary and Conclusions
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• Direct single mode simulation/experiment comparison

• Continued investigation of GAE vs EPM question

• What causes the GAE resonances to be shifted, and 

why are the shifts so diminished when neglecting the 

(often large) EP contributions to the equilibrium?

• Analytic descriptions of stability boundaries 

• Compare relative importance of enhanced electron 

diffusion and energy channeling in various regimes

• Predictions for ITER and other devices which may 

routinely access the EP parameter space necessary 

to excite these modes

Ongoing and Future Work
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Request for Electronic Copy
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Backup Slides
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HYM Physical Equations

• Single fluid 
thermal plasma

• Delta-f energetic ions
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Co-CAE Mode Converts to KAW

• CAE typically m = 0.5 – 2, peaking on axis

• KAW structure visible in 𝛿𝐵⊥ fluctuation on HFS

n=4

𝜆0=0.7

v
0
=5.0
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Counter-GAE are Core-Localized

• Typically m = 1.5 – 2.5

• Often has large compressional component near edge

n=6

𝜆0=0.7

v
0
=4.5
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Co-GAE are also Core-Localized

• Typically very low m = 0.5 – 1

• Not commonly observed in experiment?

n=9

𝜆0=0.3

v
0
=5.2
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Low Frequency Modes are Qualitatively Different

• Typically m ≥ 3 (as large as m~6)

• What are they? TAE/fishbone/EPM/???

n=2

𝜆0=0.3

v
0
=5.4
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Unexpected Low-Frequency Modes
• Frequencies : ω ~ 0.01 – 0.05ω

ci
= 2π(25 – 125) kHz

• Growth rates : γ/ω = 0.013 – 0.37, γ
max

= 0.073ω
ci

= 90 kHz

• Require large v
0

and either very high or low λ
0

• Colored circles: low n mode is most unstable mode

• Gray circles: Different mode has larger growth rate

• White circles: No unstable modes of any type
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NSTX H-mode Shot 141398

• 90 keV NBI 

at 6 MW

• v
0

= 4.9 v
A

• 𝜆0 = 0.7

• n
b
/n

e
~ 5%

••n
e

= 6 x 1019 m-3

•B
tor,0

=0.325 T

•I
p

= 0.8 MA

•f
ci,0

=2.4 MHz

[Figures from Fredrickson, PoP 2013]
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CAE & GAE Observed in Experiment

• Fredrickson observes 3 groups of modes

–Co-propagating CAE
n=6-14, 0.5ω

ci
< ω < 0.75ω

ci

–Counter-propagating CAE & GAE
0.15ω

ci  
< ω < 0.35ω

ci

–Kinks correlated with high frequency co-
CAE
ω ~ .005ω

ci

• Crocker studies moderate frequency modes

–ω > 0.25ω
ci

CAE

Mostly -3 < n < -5, more core-localized

–ω < 0.25ω
ci

GAE

Mostly -6 < n < -8, broad mode structure

[Fredrickson, PoP. 2013]

[Crocker, NF 2013]
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• Below: 𝛿𝑏⊥ for n=9, 𝜆0=0.3 co-GAE with v0/vA=5.2-6.0

• 𝜔/𝜔𝑐𝑖 increases linearly from 0.24 to 0.29

• Mode structure does not change qualitatively 
– Same eigenmode or different in subtle way?

Co-GAE structure mostly unchanged
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• To do: if time permits, would be nice to comment on 

the sometimes large variance between injection 

quantities and beam quantities 

– E.g. for CAEs, resonant lambda is typically opposite injected 

lambda (inject passing particles  modes driven by trapped 

particles, and the converse)

Resonant Quantities


