MICROGRANULE INJECTION INTO NSTX-U INSTX-U **DISCHARGES FOR EDGE DIAGNOSTIC RESEARCH** R. Lunsford¹, A. L. Roquemore¹, F. Scotti², D. K. Mansfield¹, A. Bortolon¹, R. Kaita¹, R. Maingi¹ ¹*Princeton Plasma Physics Laboratory*

Overview

- Injector mechanically drives solid impurity granules into discharge Low Field Side (LFS).
- Granule injection provides well characterized spatially localized density source.
- Injection experiments performed on EAST and DIII-D, injector installed and tested on NSTX-U.
- Benchmarked neutral gas shielding (NGS) model simulates ablation rate and mass deposition location in NSTX-U discharges.
- Extended imaging suite will be utilized to validate NGS model when NSTX-U resumes operation.

Granule Triggered ELMS

- Injected granules create an asymmetric high density filament
- . Sonic expansion leads to perpendicular pressure gradients
- . Flux tubes become ballooning unstable resulting in an edge localized mode (ELM)

ELM intensity is inversely proportional to frequency

 $\Delta W_{ELM} \times f_{ELM} \sim const$

Rapid triggering of ELMs (pacing) should lead to a reduction in the peak ELM intensity. Paced ELM heat fluxes are now reduced to a level tractable for the PFCs

Baseline mitigation strategy for ITER

njection of low velocity (~5m/s) lithi clumps (~2mm) into NSTX (2008)

Neutral Gas Shielding (NGS) Model for Granule Ablation

- Electron influx sublimates the pellet surface
- High density neutral cloud forms around the granule
- Ablation rate of the shielded granule is controlled by the neutral cloud
- Heat transfer ionizes the cloud which streams along field lines
- Shielding is maintained until the granule source is exhausted

Granule injected into the page

Ionized Material

$$4\pi r_g^2 q_s = G[\Delta H + T_C(1 + \frac{5}{6}M_C^2) + \frac{3}{2}(1 + \frac{5}{6}M_C^2) + \frac{3}{2}(1 + \frac{6}{6}M_C^2) + \frac{3}{2}(1 + \frac{6}{6}M_C^2) + \frac{6}{6}M_C^2)$$

$$-\frac{dr_g}{dt} = \frac{\eta f_B q_s}{n_0[\Delta H + T_S(\frac{5}{2} + \frac{5}{6}M_C^2)]} \qquad Q_{inv} = cm_p \frac{1}{6}$$

Adapted from Parks et al. Nucl. Fusion 34 (1994) & Kocsis et al. PPCF 41 (1999)

Ablation rate of the injected granule

$$G = 4\pi q_s \eta \xi_g f_B$$

Cloud shielding parameter (η) is calibrated using ablation time envelope from DIII-D injection experiment

$$q_s = \frac{1}{2} n_e T_e \left(\frac{8T_e}{\pi m_e}\right)^{1/2}$$

$$\xi_g = \frac{r_g^2}{n_g} \left[\Delta H + \frac{10}{3} T_S \right]^{-1}$$

²Lawrence Livermore National Laboratory

Granule Injector Installed on NSTX-U

NSTX-U Granule Penetration Projections

Using the calibration factors from the DIII-D Li injection experiments and NSTX-U edge profiles we project the penetration depths and ablation rates for injected impurity granules

Simulations of multi-species granule injections of various sizes at 50 *m*/sec injection velocity.

Extended Ablation Imaging Suite

Granule Injector Uses in Next Step Devices

The Granule Injector is an extremely flexible tool for ELM pacing, edge physics, and impurity transport studies

- Triggered ELMs for impurity flushing in discharges with low natural ELM frequency
- High frequency pacing of ELMs for ITER (Beryllium Granules)
- Boron granule injection for steady state wall conditioning
- High-Z granule injection for impurity transport research

Upcoming Research

- Examine ablation rates and penetration depths of multiple granule species.
- High speed camera measurements of granule ablation and plasmoid formation. Compare to pellet ablation models.
- Compare characteristics of stimulated ELMs to spontaneous ELMs and MHD codes (JOREK, M3DC1).
- Determine minimum granule size, injection frequency and input velocity required for reliable ELM triggering.
- Monitor core impurity transport caused by granule instigated bursting in naturally ELM free lithiated discharges.

