

NSTX-U SOL reflectometer

Cornwall Lau (ORNL) J.B Wilgen (ORNL), J.B Caughman (ORNL), J. Hosea (PPPL), R. Perkins (PPPL), G. Taylor (PPPL)

APS 2016 San Jose, USA 10/31/2016 to 11/04/2016

Outline of this poster

- Current status of this NSTX-U reflectometer
 - main physics goal is to better characterize SOL and support HHFW antenna operation
 - SOL losses and HHFW loading calculations
 - ORNL SOL reflectometer is functional and upgraded for NSTX-U
- Use of X-mode L, R, and O-mode cutoffs to measure SOL density profiles for NSTX-U
 - |B| is now doubled of NSTX parameters
 - using all modes will save time/money as well as provide measurements at larger range of |B|
 - -possibility of |B| profile measurement

ISTX-U

RIDGE

2

ORNL SOL reflectometer is an important diagnostic to understand HHFW physics

- ORNL SOL reflectometer measure SOL density profiles at HHFW antenna to study antenna-plasma coupling
 - antenna-plasma loading is exponentially sensitive to distance from antenna to fast wave cutoff
 - For fast wave operation in ramp-up, SOL density profiles are critical in determining HHFW operations
- Recent results¹ using 3D AORSA simulation (with collisional damping as proxy), demonstrates importance of fast wave cutoff location
 - if SOL density is too low, antenna-plasma loading dominates loss
 - if SOL density is too high, some SOL absorption mechanism dominates loss

OAK RIDGE

NSTX-U

Location of reflectometer in 2001!

Status of ORNL SOL reflectometer on NSTX-U (1/2)

- ORNL SOL reflectometer electronics, waveguide is fully re-installed in NSTX-U test cell
 - computer, power switch still needs to be installed for between shot changes
- Digitizer is fully operational at up to 65 MSPS
- Two days of plasma shots before NSTX-U coil failure
 - However, plasma data is corrupted by electronics issues (next slide)
 - electronics is believed to be fixed after campaign

Status of ORNL SOL reflectometer on NSTX-U (2/2)

- In-vessel calibration confirmed last oscillator was ringing
 - This has been fixed approximately a month ago
 - Invessel calibration confirms plasma data noise is due to electronics, not plasma effects

 Hardware should be "ready" for next campaign, unless other diagnostic debugging issues come up...

Review of cold electromagnetic waves that are applied to reflectometry

Name	Cutoff Frequency	Characteristics	Antenna Polarization
X-mode R-cutoff	$\omega_R = \frac{\sqrt{\omega_{ce} + 4\omega_{pe}^2} + \omega_{ce}}{2}$	k⊥B, E⊥ B	E B
X-mode L-cutoff	$\omega_L = \frac{\sqrt{\omega_{ce} + 4\omega_{pe}^2} - \omega_{ce}}{2}$	k⊥B, E⊥B	€ B
O mode cutoff	$\omega_0 = \omega_{pe}$	k⊥B, E∥B	E B
O and X mode cutoffs	discussed above	k ⊥ B E ~30-60° to B	E B

APS 2016, NSTX-U SOL Reflectometer, Cornwall Lau, 10/31/2016 to 11/04/2016

Using multiple reflectometry cutoffs has been successful on DIIID and ASDEX-U

Comparison of 32-72 GHz reflectometry (red) to Thomson scattering (black) on DIIID¹. O-mode cutoff and X-mode R-cutoff is necessary to obtain expanded density range of reflectometer

density profiles obtained with O-mode (dashed line) and with X-mode L cut-off (individual points) on ASDEX-U².

> ¹ G. Wang (NF 2006) ² P. Varela (RSI 2012)

6-27 GHz X-mode L and R-cutoff frequencies can measure up to ~1x10¹⁹ m⁻³

- X-mode cutoff will be important for 6-27 GHz operation on NSTX-U
 - same density as NSTX case, but |B| is now doubled
 - X-mode R-cutoff density coverage is substantially reduced
 - Minimum cyclotron frequency is still expected to be within 6-27 GHz operation
 - X-mode L-cutoff has expanded density coverage

OAK RIDGE

NSTX-U

- use of both X-mode L-cutoff and Rcutoffs will allow for operation for range of NSTX-U's density and |B| field
 - density gradient variations do not significantly affect results

Dual O-mode and X-mode reflectometer operation can provide two measurements

- O and X-mode cutoffs cover overlapping radial range
 - 6-27 GHz O-mode covers 4.5x10¹⁷ m⁻³ to 9x10¹⁸ m⁻³
 - O-mode depends only on density
 - 6-27 GHz X-mode R-cutoff and L-cutoff covers ~ $5x10^{16}$ m⁻³ to $1x10^{19}$ m⁻³
 - X-mode depends on density and magnetic fields
 - Simultaneous measurement of both X-mode and O-mode at overlapping density range may give both density and magnetic field¹
 - time averaged scalogram or spectrogram should be able to measure group delay and distinguish O-mode and X-mode
 - If waveguide launchers are polarized to launch and receive both O and X-modes, signal processing is likely to resolve dual modes over reflectometer frequency range¹
 - if not possible, 3 waveguide launchers (1 to send O/X, 2 to receive either O or X) will also work²

¹Varela, RSI 2012 ²Wang, RSI 2004

Using O and X-mode to determine density and |B| profile

$$\phi(\omega) = 2 \frac{\omega}{c} \int_{r_0}^{r(\omega)} N dr - \pi / 2$$
 Reflectometer equation

$$\mathbf{r}(\omega) = \mathbf{r}_0 - \frac{\mathbf{c}}{\pi} \int_0^{\omega} \frac{d\phi}{d\omega'} \frac{d\omega'}{(\omega^2 - {\omega'}^2)^{1/2}}$$
 O-Mode

 $r(\omega_{i+1}) = r_0 - f(\phi_i, \phi_{i-1}..., \omega_i, \omega_{i-1}..., r(\omega_i), r(\omega_{i-1})..., B(r(\omega_i), r(\omega_{i-1})))$ X-mode¹

- Use O-mode phase measurements to obtain density profiles, $r(\omega)$
- Use $r(\omega)$ from O-mode phase measurement and X-mode phase measurement to obtain B(r)
- Requires X-mode and O-mode to measure same radial region
- Requires low enough frequency, so that O-mode measurement is meaningful
- This is all achieveable for ORNL SOL reflectometer on NSTX-U

Possible issues for |B| measurement

- Significant issues still need to be determined
 - determining location of minimum cyclotron frequency for X-mode R-cutoff
 - typical signal amplitude approach will not work due to presence of X-mode L-cutoff
 - discontinuity of beat frequency is not always clear in the NSTX data
 - assumption for shape of density profile below 4.5x10¹⁷ m⁻³ (6 GHz O-mode cutoff density)
 - sensitivity of magnetic field profiles to this assumption will need to be studied
 - extending reflectometer to lower frequencies will help
 - effect of density fluctuations on density profile
 - needs to be studied in steady state conditions

- if B_p is desired, accuracy of B_t calibration needs to considered

HHFW waves measurement

- Sub-30 MHz RF wave and PDI measurement is next priority
 - -low-frequency circuit already used in 2006
 - simultaneous density profile and RF wave measurement may be possible during frequency sweep?
 - Use of new 65 MHz digitizer may make this easier, as density profiles and RF wave measurement will be on same digitizer
 - -data mining from NSTX-U, and improved data analysis will be desirable CAK RIDGE

NSTX-U

PDI measurement (Wilgen APS 2006)

Conclusion

- Overview of ORNL SOL reflectometer on NSTX-U
 - main physics goal is to better characterize SOL and support HHFW antenna operation
 - -ORNL SOL reflectometer is being upgraded for NSTX-U
- Use of X-mode L, R, and O-mode cutoffs to measure SOL density profiles for NSTX-U
 - using all modes will provide measurements at larger range of |B|
 - -possibility of |B| profile measurement
- Future work discussed in this presentation
 - -RF wave measurement

¢ OAK

RIDGE

NSTX-U