

RF power deposition effects observed for the SOL in NSTX/NSTX-U and EAST and the accompanying RF effects on divertor Langmuir probes*

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL Princeton U Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Illinois **U** Maryland **U** Rochester **U** Tennessee U Tulsa **U** Washington **U** Wisconsin X Science LLC

J. C. Hosea, R. J. Perkins, M. A. Jaworski, N. Bertelli, C. Qin^a, G. Taylor, L. Wang^a, J. Yang^a, X.J. Zhang^a and the NSTX-U and EAST Teams

PPPL, ^aASIPP

APS-DPP Conference, San Jose, CA, November, 2016

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res, Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA. Frascati CEA. Cadarache IPP, Jülich **IPP**, Garching ASCR. Czech Rep

Office of

Science

* This work is supported by USDOE Contract No. DE-AC02-09CH11466

Edge RF deposition effects for HHFW heating on NSTX

Significant HHFW power lost via the SOL to distinctive spirals on the divertor regions of NSTX

- RF power deposited in bright spirals on divertor
- Up to 60% of HHFW missing from core
- IR cameras show up to 2 MW/m² heat flux to divertor
- What is mechanism for RF deposition at the divertors?
- How does HHFW power propagate to the divertor?

"Hot" RF heat flux spiral on the divertor floor and instrumented tile/Langmuir probe locations on NSTX

- Toroidal locations are indicated by Bay letters
- Langmuir probes at Bay B are used to determine RF effects on the divertor plate

RF only discharge with probe 1 intercepting the RF heat flux spiral near the outer vessel strike radius

The RF heat flux spiral falls on tiles A4 and K4 for this RF only discharge

- ΔI_{tile} is up to 2.5 A on tile A4
- Current on tile A4 rises slowly after RF turn-on showing the movement of the plasma
- I_{V=0} and V_f cross through 0 when the outer vessel strike radius passes over the probe

RF rectification causes a negative shift in the probe floating potential vs P_{RF}

- a) Probe characteristics with RF rectification:
 - V_{fl} moves to more negative V_{probe} as UHF cavity power is increased in 5 dB steps from 2.7 mW to 2.7 W

[J. Hosea, Stanford University Plas. Inst. Report #8 (1966).]

• For constant T_e , I_{sat} , and V_{plasma} , $exp(\Delta V_{fl}/T_e) = I_0(V_{RF}/T_e)$

[A. Boschi and F. Magistrelli, Il Nuo. Cimento 29 (1963) 487.]

b) T_e , I_{sat} and V_{plasma} are approximately constant here except at highest power

Change in floating potential from P3 (no RF) to P1 (with RF under spiral) and V_{RF} vs P_{RF} (no NBI)

RF only – 141836, 141830 t = 0.294 s

 Substantial decrease in V_{RF} with decrease in P_{RF}

-
$$P_{RF}$$
 1.1 MW \Rightarrow 0.55 MW

· V_{RF} ~ 64 V ⇒ ~ 33 V
[exp(
$$\Delta V_{fl}/T_e$$
) = I₀(V_{RF}/T_e)]

- Decrease is not 1/√ 2 but edge plasma conditions are different as well
 - note that I_{sat} decreases with P_{RF} and T_e increases with P_{RF} here

R. Perkins et al., PoP 22 (2015) 042506

Far field fast wave rectification is likely cause of negative V_{fl} shift under spiral

- Large RF electric fields in SOL are predicted by AORSA modeling
- Edge modes are evident in the SOL region when the density in front of the antenna n_{ant} exceeds the fast wave cutoff density

Electric field amplitude vs edge density

SOL fast wave resonances are predicted in a two density step cold plasma cylindrical model

- Fast wave SOL resonances are supported by the annulus density
 - These are distinct from the coaxial mode which is confined to the vacuum region
- The k_{||} for these resonances
 move across the antenna
 spectra with increasing density
- ~ 50% of RF power in the m = 2
 resonant mode is lost in the annulus region
 - < 10% of RF power is in the vacuum

[R. Perkins et al., EPS (2015) P2.143]

Edge RF deposition effects for minority IC heating on EAST

Subtraction of jpeg camera frames (with RF minus without RF) reveals RF deposition patterns on EAST

- Band RF deposition structure that depends on the antenna-separatrix gap is observed on the lower divertor
 - Possibly part of an RF deposition spiral (no ELMs in this discharge)
- Similar to spiral bands observed on NSTX
- Need more data at higher coupled power and more analysis to quantify the SOL RF deposition
 - An experiment is planned at higher RF power in the current experimental campaign

RF produced band structure depends on gap

- More and narrower bands are observed at 5 cm gap relative to 2 cm gap
- Broader bands at 2 cm may be due to higher coupled power

Lower outer divertor probe measurements show that RF effect on floating potential V_{fl} depends on gap

- For gap = 2 cm, positive δV_f is found for lower numbered probes and negative δV_f is found for higher numbered probes
- For gap = 5 cm, negative δV_f is found for all probes down to the OVSR

Intercepts of field lines in front of antenna on bottom divertor probes depends on the gap

- Gap = 2 cm: probes intercept field lines in front of antenna from separatrix/ outer vessel strike radius to ~ 2 cm/middle of probe array
- Gap = 5 cm: probes intercept field lines in front of antenna from separatrix/ outer vessel strike radius to ~ 5 cm/above top of probe array

RF change of floating potential V_{fl} reverses polarity from the SOL to the vicinity of the antenna

- V_{fl} depends on magnetic field lines intercepting the antenna or passing in the antenna/separatrix gap
 - positive δV_f for field lines intercepting the antenna (as found on EAST, C-mod, Tore Supra and Asdex-U)
 - negative δV_f for field lines in the antenna/separatrix gap (as for NSTX)
- As for NSTX, fast wave rectification is likely cause for negative $\delta V_{\rm fl}$ in gap
 - RF voltage at divertor probe # 9 is $I_0(V_{RF}/T_e) = \exp(\Delta V_{fl}/T_e)$
 - V_{RF_P9} ~ 38 V
- Cause of positive δV_{fl} requires further study
 - IV characteristic needs to be measured

Reciprocating probe data shows similar dependence of δV_{fl} relative to field lines as for the divertor probes

- δV_{fl} is negative away from the antenna and is positive in the vicinity of the antenna
- The positive change in V_{fl} extends ~ 0.5 cm into the gap

Edge RF deposition effects for HHFW heating on NSTX-U

An expanded probe array will be used on NSTX-U to study the cause(s) for the change in δV_{fl} polarity

Probes 1 - 6 LRDFIT04 204118 0.600 s

- This probe array can cover the entire separatrix/antenna SOL space
- These probes will be used to measure the I-V characteristics as well as the RF voltages across the probe sheaths.

RF sheath voltage will be measured directly on NSTX-U with coaxial probes and sheath rectification will be quantified

- A wide angle IR camera will provide heat deposition measurements over much of the spiral
- Comparison of calculated RF rectification heat deposition to IR measurements will be used to quantify the heat contribution of the HHFW far field

Summary

- The floating potential of probes under the spiral on the lower divertor of NSTX shifts negatively relative to that for probes away from the spiral
 This negative δV_{fl} is consistent with RF rectification of fast wave far fields
- AORSA and cold plasma cylindrical modeling predict enhanced SOL fast wave fields at SOL densities above the fast wave cutoff value near the antenna
- The floating potential of probes on the outer lower divertor of EAST shifts either negative or positive depending on the magnetic field lines striking a probe coming from the SOL away from the antenna or from the vicinity of the antenna
- Again, the negative δV_{fl} is consistent with RF rectification of fast wave far fields
- However, the cause of the positive δV_{fl} , also observed on other tokamaks, is not fully understood and needs further study
- We are extending our probe array on NSTX-U to intercept field lines across the entire SOL in front of the antenna to permit I-V characteristic measurements in the vicinity of the antenna
- The probes on NSTX-U are coaxial and will provide a direct measurement of the local RF field for comparison to rectification theory