Interaction between high harmonic fast waves and fast ions in NSTX/NSTX-U plasmas.

N. Bertelli¹, E. Valeo¹, M. Gorelenkova¹, D. L. Green², M. Podestà¹, and the RF SciDAC Team. ¹PPPL,²ORNL (USA)

Abstract	NSTX case	P2F code: from particles list to distr. function
This paper examines the interaction between fast waves and fast ions generated by NBI in NSTX plasmas by using the recent extension of the RF full-wave code TORIC to include non-Maxwellian ions distribution functions. Tests on the RF kick-operator implemented in the Monte-Carlo particle code NUBEAM is also discussed in order to move towards a self consistent evaluation of the RF wave-field and the ion distribution functions in the TRANSP code.	$\begin{array}{l} \mbox{Main parameters:} \\ \mbox{$\stackrel{\bullet}{$$}$ TRANSP Run ID: 134909B01$} \\ \mbox{$$$$$ Plasma species: electron, D, D-NBI$} \\ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	 P2F code was developed by D. L. Green (ORNL) P2F takes a particle list and creates a 4D (<i>R</i>, <i>z</i>; <i>v</i>, <i>v</i>_⊥) distribution function for use in a continuum code like TORIC At present it has essentially three modes: build a 4D histogram giving a noisy distribution uses Gaussian shape particles in velocity space to give smooth velocity space distributions at each point in space distribute each particle along its orbit according to the
TORIC v.5 code	Test HHFW: Maxwellian reference case	 percentage of bounce time Successfully tested starting with a particles list representing a Maxwellian

• The TORIC v.5 code solves the wave equation for the

Reference: Re(E_{-} Numerical: $Re(E_{-})$

Numerical: $\operatorname{Re}(E_{\parallel})$ Reference: $Re(E_{\parallel})$

0.22

73.88

25.90

0.22

73.58

26.21

electric field E:

• TORIC v.5 uses a Maxwellian plasma dielectric tensor

 $arepsilon \equiv \mathrm{I} + rac{4\pi i}{\sigma} = \mathrm{I} + \chi$

- Two TORIC v.5's versions:
 - TORIC: IC minority regime
 - FLR corrections only up to the $\omega = 2\omega_{
 m ci}$
 - TORIC-HHFW: High Harmonic Fast Wave regime
 - Full hot-plasma dielectric tensor employed
 - The k^2 value in the argument of the Bessel functions is obtained by solving the local dispersion relation for FWs
- Principal author M. Brambilla (IPP Garching, Germany)
- TORIC v.5 is implemented in TRANSP

HHFW regime: Maxwellian

- Local coordinate frame $(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}})$ with $\hat{\mathbf{z}} = \hat{\mathbf{b}}$ and $\mathbf{k} \cdot \hat{\mathbf{y}} = \mathbf{0}$ (Stix).
- The susceptibility for a hot plasma with a Maxwellian distribution function can be evaluated analitically (as originally implemented in TORIC)

$$\begin{bmatrix} 2\omega_{\rm p}^2 & \omega_{\rm p}^2 + \infty \\ -\lambda \nabla \omega_{\rm p}^2 & -\lambda \nabla \omega_{\rm p} \end{bmatrix}$$

HHFW regime: Bi-Maxwellian distribution

 $f_{
m D}(v_{\parallel},v_{\perp}) = (2\pi)^{-3/2} (v_{
m th,\parallel} v_{
m th,\perp}^2)^{-1} \exp[-(v_{\parallel}/v_{
m th,\parallel})^2 - (v_{\perp}/v_{
m th,\perp})^2]$

with $v_{
m th,\parallel}=\sqrt{2C_\parallel T(\psi)/m_{
m D}}$, $v_{
m th,\perp}=\sqrt{2C_\perp T(\psi)/m_{
m D}}$, with constants C_\parallel and C_\perp

- For $C_{\perp} = 1$ and $C_{\parallel} = \{.5, 1., 3., 5.\}$, $P_{\text{D-NBI}}$, varied by less than 1%
 - for small C_{\parallel} , the absorption profile tends to be localized to the resonant layers

TORIC + P2F code: Maxwellian case

NUBEAM particles list (NSTX shot 141711 WITHOUT HHFW)

1. get NUBEAM particle list 2. run P2F to obtain a distribution function 3. pre-compute χ with f above 4. run TORIC with pre-computed χ 5. compare TORIC run with standard TORIC		NSTX shot 141711 $P_{\rm NBI}=2$ MW $I_{\rm P}=900$ kA particles number = 53115	
$R \sim 1.0 \text{ m}, Z \sim 0 \text{ m}$	Abs. fraction	f Maxw.	f non-Maxw.

where

$$X_{s} = \begin{bmatrix} a_{\omega} \omega_{k \parallel} v_{\text{th}}^{2} \sqrt{|\mathbf{v}\parallel} + \omega_{n=-\infty} c - \mathbf{I}_{n}(\mathbf{x}) \end{bmatrix}_{s}$$
where

$$Y_{n} = \begin{pmatrix} \frac{n^{2}I_{n}}{\lambda} A_{n} & -in(I_{n} - I_{n}')A_{n} & \frac{k_{\perp}}{\omega_{c}} \frac{nI_{n}}{\lambda} B_{n} \\ in(I_{n} - I_{n}')A_{n} & \left(\frac{n^{2}}{\lambda} I_{n} + 2\lambda I_{n} - 2\lambda I_{n}'\right) A_{n} & \frac{ik_{\perp}}{\omega_{c}} (I_{n} - I_{n}')B_{n} \\ \frac{k_{\perp}}{\omega_{c}} \frac{nI_{n}}{\lambda} B_{n} & -\frac{ik_{\perp}}{\omega_{c}} (I_{n} - I_{n}')B_{n} & \frac{2(\omega - n\omega_{c})}{k_{\parallel} v_{\text{th}}^{2}} I_{n}B_{n} \end{pmatrix}$$

$$A_{n} = \frac{1}{k_{\parallel} v_{\text{th}}} Z_{0}(\zeta_{n}), \quad B_{n} = \frac{1}{k_{\parallel}} (1 + \zeta_{n} Z_{0}(\zeta_{n})), \quad Z_{0}(\zeta_{n}) \equiv \text{plasma dispersion func.}$$

$$\zeta_{n} \equiv \frac{\omega - n\omega_{c}}{k_{\parallel} v_{\text{th}}}, \quad \lambda \equiv \frac{k_{\perp}^{2} v_{\text{th}}^{2}}{2\Omega_{c}^{2}}$$

HHFW regime: Beyond Maxwellian

The susceptibility for a hot plasma with an arbitrary distribution function:

$$egin{aligned} \chi_{\mathrm{s}} &= rac{\omega_{\mathrm{ps}}^2}{\omega} \int_{0}^{+\infty} 2\pi v_{\perp} \mathrm{d} v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d} v_{\parallel} \hat{\mathrm{z}} \hat{\mathrm{z}} rac{v_{\parallel}^2}{\omega} igg(rac{1}{v_{\parallel}} rac{\partial f}{\partial v_{\parallel}} - rac{1}{v_{\perp}} rac{\partial f}{\partial v_{\perp}} igg)_{\mathrm{s}} \ &+ rac{\omega_{\mathrm{ps}}^2}{\omega} \int_{0}^{+\infty} 2\pi v_{\perp} \mathrm{d} v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d} v_{\parallel} \sum_{n=-\infty}^{+\infty} igg[rac{v_{\perp} U}{\omega - k_{\parallel} v_{\parallel} - n \Omega_{\mathrm{cs}}} \mathrm{T}_{n} igg] \end{aligned}$$

where

$$U \equiv \frac{\partial f}{\partial v_{\perp}} + \frac{k_{\parallel}}{\omega} \begin{pmatrix} v_{\perp} \frac{\partial f}{\partial v_{\parallel}} - v_{\parallel} \frac{\partial f}{\partial v_{\perp}} \end{pmatrix} \text{ and}$$
$$T_n = \begin{pmatrix} \frac{n^2 J_n^2(z)}{z^2} & \frac{in J_n(z) J_n'(z)}{z} & \frac{n J_n(z) J_n'(z)}{z} \\ -\frac{in J_n(z) J_n'(z)}{z} & (J_n'(z))^2 & -\frac{i J_n(z) J_n'(z) v_{\parallel}}{z v_{\perp}} \\ \frac{n J_n^2(z) v_{\parallel}}{z v_{\perp}} & \frac{i J_n(z) J_n'(z) v_{\parallel}}{v_{\perp}} & \frac{J_n^2(z) v_{\parallel}}{v_{\perp}^2} \end{pmatrix}, \quad z \equiv \frac{k_{\perp} v_{\perp}}{\Omega_{cs}}$$

- Integrals in the v_{\parallel} -space with the singularity function $(\omega-k_{\parallel}v_{\parallel}-n\Omega_{
 m cs})^{-1}$
- Sum over the harmonic number n and the k_{\perp} dependence in the argument of the Bessel functions

• For $C_{\parallel} = 1$ and $C_{\perp} = \{.5, 1., 3., 5.\}$, the corresponding $P_{\rm D-NBI} = \{70.06\%, 73.56\%, 62.84\%, 48.48\%\}$

Slowing-down distribution

$$f_{
m D}(v_{\parallel},v_{\perp}) = egin{cases} rac{A}{v_{
m c}^3}rac{1}{1+(v/v_{
m c})^3} & {
m for} \; v < v_{
m m}, \ 0 & {
m for} \; v > v_{
m m} \end{cases} \quad v_{
m m} \equiv \sqrt{2E_{
m D-NBI}/m_{
m D}}$$

D-NBI

53.94 %

58.12 %

PPPL

PLASMA PHYSICS

Larger $P_{\rm D-NBI}$ is expected due to a larger f tail formed by the RF application

RF kick operator in NUBEAM

• RF resonance condition in terms of E, μ , and B

$$\Lambda^{
m rf}(B,n,k_{\parallel},E,\mu)\equiv nrac{qB}{m_{
m i}}+k_{\parallel}\sqrt{rac{2}{m_{
m i}}(E-\mu B)}-\omega_{
m rf}$$

• Monte-Carlo implementation of RF diffusion operator [X. Q. Xu and M. N. Rosenbluth, PoF B 3, 627 (1991), C. F. Kennel and F. Engelmann, PoF 9, 2377 (1966)]

$$Q_{
m rf} = D_{
m rf} \left[rac{\partial}{\partial V_{\parallel}} (
u^{
m rf}_{\parallel,s} f) + rac{\partial}{\partial V_{\perp}^2} (
u^{
m rf}_{\perp,s} f) + rac{\partial^2}{\partial V_{\parallel} \partial V_{\perp}^2} (
u^{
m rf}_{\parallel\perp} f) + rac{1}{2} rac{\partial^2}{\partial V_{\parallel}^2} (
u^{
m rf}_{\parallel} f) + rac{1}{2} rac{\partial^2}{\partial (V_{\perp}^2)^2} (
u^{
m rf}_{\perp,s} f) + rac{\partial^2}{\partial V_{\parallel} \partial V_{\perp}^2} (
u^{
m rf}_{\parallel\perp} f) + rac{\partial^2}{\partial V_{\parallel}^2} (
u^{
m rf}_{\parallel\perp} f) + rac{\partial^2}{\partial V_{\parallel}^2} (
u^{
m rf}_{\perp,s} f) + rac{\partial^2}{\partial V_{\parallel}^2} (
u^{
m rf}_{\parallel\perp,s} f) + rac^2}{\partial V_{\parallel\perp,s} f) + rac{\partial^2}{\partial V_{\parallel\perp,s} f} + rac^2}{\partial V$$

$$egin{aligned} V_{ot}^{'2} &= V_{ot,0}^2 -
u_{ot,s}^{ ext{rf}} \Delta t + 2\sqrt{3}(R_2 - 0.5) \sqrt{\left[
u_{ot}^{ ext{rf}} - rac{(
u_{ot}^{ ext{rf}})^2}{
u_{ot}^{ ext{rf}}}
ight] \Delta t} + 2\sqrt{3}(R_1 - 0.5) rac{
u_{ot}^{ ext{rf}}}{
u_{ot}^{ ext{rf}}} \sqrt{
u_{ot}^{ ext{rf}} \Delta t} \ V_{ot}^{ ext{rf}} \Delta t) + 2\sqrt{3}(R_1 - 0.5) rac{
u_{ot}^{ ext{rf}} - rac{(
u_{ot}^{ ext{rf}})^2}{
u_{ot}^{ ext{rf}}} \sqrt{
u_{ot}^{ ext{rf}} \Delta t} \end{aligned}$$

• RF wave field information from TORIC: $E_+,\,E_-,\,{
m and}\;k_\perp$ for each n_ϕ

• Evaluate six components of T_n

χ is pre-computed to reduce TORIC runtime

- A set of N_{ψ} files is constructed, each containing the principal values and residues of χ for a single species on a uniform mesh $((v_{\parallel}, heta)$ and $(v_{\parallel}, heta, N_{\perp})$ for ICRH and HHFW regimes, respectively), for a specified flux surface
- $f(v_{\parallel}, v_{\perp})$, is specified in functional form at the minimum field strength point $B(\theta) = B_{\min}$ on ψ_i
- An interpolator returns the components of χ .

 $A=3/[4\pi\ln(1+\delta^{-3})], \hspace{0.2cm} \delta\equivrac{v_{
m c}}{v_{
m m}}, \hspace{0.2cm} v_{
m c}^3=3\sqrt{\pi}(m_{
m e}/m_{
m D})Z_{
m eff}v_{
m th}^3, \hspace{0.2cm} Z_{
m eff}\equiv\sum_{
m ions}rac{Z_{
m i}^2n_{
m i}}{n_{
m c}}$

For $Z_{
m eff}=2$ and $E_{
m D-NBI}=30, 60, 90, 120$ keV \Longrightarrow $P_{\rm D-NBI} = \{77.84\%, 75.85\%, 70.97\%, 64.71\%\}$

- Similar behavior when varied C_{\perp} in the bi-Maxwellian case
- Fast ions absorption should decrease with something like $T_{\text{fast ions}}^{-3/2}$ (?)
 - This is due to the behavior of the function $f(\lambda) = \lambda I_n e^{-\lambda}$, which reached a maximum value at $\lambda = n^2/3$. For large λ , $f(\lambda) \propto \lambda^{-3/2}$ [See Stix's book & Ono, PoP 1995]

First and preliminary test of RF kick operator

Comparison between TORIC and NUBEAM + RF kick operator assuming a Maxw. distribution at the deposition

WERE VENIVERSITY N. Bertelli, 58th APS Division of Plasma Physics, Oct. 31 - Nov. 4, 2016 - San Jose, California