Interaction between high harmonic fast waves
 N. Bertelli ${ }^{1}$, E. Valeo ${ }^{1}$, M. Gorelenkova ${ }^{1}$, D. L. Green ${ }^{2}$, M. Podestà ${ }^{1}$, and the RF SciDAC Team.

U.S. DEPARTMENT OF

ENERGY

Abstract

This paper examines the interaction between fast waves and fast ions generated by NBI in NSTX plasmas by using the recent extension of the RF full-wave code TORIC to include non-Maxwellian ions distribution functions. Tests on the RF kick-operator implemented in the Monte-Carlo particle code NUBEAM is also discussed in order to move towards a self consistent evaluation of the RF wave-field and the ion distribution functions in the TRANSP code.

TORIC v. 5 code

- The TORIC v. 5 code solves the wave equation for the electric field E :
- TORIC v. 5 uses a Maxwellian plasma dielectric tensor

$$
\varepsilon \equiv \mathrm{I}+\frac{4 \pi i}{\omega} \sigma=\mathrm{I}+\chi
$$

- Two TORIC v.5's versions:

TORIC: IC minority regime
■ FLR corrections only up to the $\omega=2 \omega_{\text {ci }}$
TORIC-HHFW: High Harmonic Fast Wave regime

- Full hot-plasma dielectric tensor employed
- The $\overline{k^{2}}$ value in the argument of the Bessel functions is ob
- Principal author M. Brambilla (IPP Garching, Germany)
- TORIC v. 5 is implemented in TRANSP

HHFW regime: Maxwellian

Local coordinate frame ($\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$) with $\hat{\mathbf{z}}=\hat{\mathrm{b}}$ and $\mathrm{k} \cdot \hat{\mathbf{y}}=\mathbf{0}$ (Stix).
The susceptibility for a hot plasma with a Maxwellian distribution function can be evaluated analitically (as originally implemented in TORIC)

HHFW regime: Beyond Maxwellian

The susceptibility for a hot plasma with an arbitrary distribution function:

$$
\begin{aligned}
& \left.\chi_{s}=\frac{\omega_{\rho s}^{2}}{\omega} \int_{0}^{+\infty} 2 \pi v_{\perp} d v_{\perp} \int_{-\infty}^{+\infty} d v_{\| \mid \hat{z}}^{\omega} \frac{v_{\|}^{2}}{\omega}\left(\frac{1}{v_{\|} \partial f} \frac{\partial f}{v_{\|}}-\frac{1}{v_{\perp}} \frac{\partial f}{\partial v_{\perp}}\right)\right)_{s}+ \\
& \left.\frac{\omega_{\rho}^{2}}{\omega} \int_{0}^{+\infty}{ }_{2 \pi v_{\perp} d v_{\perp}} \int_{-\infty}^{+\infty}{\mathrm{d} v_{\|} \sum_{n=-\infty}^{+\infty}\left[\frac{v_{\perp} U}{\omega-k_{\|} v_{\|}-n \Omega_{\mathrm{cs}}} \mathrm{~T}_{n}\right]}^{\mathrm{s}}\right] \\
& U \equiv \frac{\partial f}{\partial v_{\perp}}+\frac{k_{\|}}{\omega}\left(v_{\perp} \frac{\partial f}{\partial v_{\|}}-v_{\|} \frac{\partial f}{\partial v_{\perp}}\right) \quad \text { and }
\end{aligned}
$$

- Integrals in the $v_{\|}$-space with the singularity function $\left(\omega-\boldsymbol{k}_{\|} \boldsymbol{v}_{\|}-n \Omega_{\mathrm{cs}}\right)^{-1}$
- Sum over the harmonic number n and the k_{\perp} dependence in the argument of the Bessel functions
- Evaluate six components of T_{n}

χ is pre-computed to reduce TORIC runtime

- A set of N_{ψ} files is constructed, each containing the principal values and residues of χ for a single species on a uniform mesh $\left(\left(\boldsymbol{v}_{\|}, \boldsymbol{\theta}\right)\right.$ and $\left(\boldsymbol{v}_{\|}, \boldsymbol{\theta}, \boldsymbol{N}_{\perp}\right)$ for ICRH and HHFW regimes, respectively), for a specified flux surface
- $f\left(\boldsymbol{v}_{\|}, v_{\perp}\right)$, is specified in functional form at the minimum field strength point $B(\boldsymbol{\theta})=B_{\min }$ on ψ_{j}
- An interpolator returns the components of χ.

NSTX case

Main parameters:

- TRANSP Run ID: 134909801
- Plasma Species: electron, D, D-NB
- | $I_{\mathrm{p}}=868 \mathrm{kA}$ |
| :--- |
| $T_{e}(0)=1.1 \mathrm{ke}$ |

- $T_{\mathrm{D}}(0)=1.1 \mathrm{keV}, T_{\mathrm{D}-\mathrm{NBI}}(0)=21.4 \mathrm{ke}$
from TRANSP $\left(T_{\mathrm{bi}}=\frac{2 U}{3} \pi_{\mathrm{a}}\right)$

Test HHFW: Maxwellian reference case

HHFW regime: Bi-Maxwellian distribution

- For $C_{\|}=1$ and $C_{\perp}=\{.5,1 ., 3 ., 5$.$\} , the corresponding$ $P_{\mathrm{D}-\mathrm{NBI}}=\{70.06 \%, 73.56 \%, 62.84 \%, 48.48 \%\}$

Slowing-down distribution
$f_{\mathrm{D}}\left(\boldsymbol{v}_{\|}, v_{\perp}\right)=\left\{\begin{array}{ll}\frac{A}{v_{0}} \frac{1}{v_{1}+\left(v_{1} / v_{c}\right)^{3}} & \text { for } v<v_{\mathrm{m}}, \\ 0 & \text { for } v>v_{\mathrm{m}}\end{array} \quad v_{\mathrm{m}} \equiv \sqrt{2 E_{\mathrm{D}-\mathrm{NBI}} / m_{\mathrm{D}}}\right.$
$A=3 /\left[4 \pi \ln \left(1+\delta^{-3}\right)\right], \quad \delta \equiv \frac{v_{\mathrm{c}}}{v_{\mathrm{m}}}, \quad v_{\mathrm{c}}^{3}=3 \sqrt{\pi}\left(m_{\mathrm{e}} / m_{\mathrm{D}}\right) Z_{\mathrm{eff}} v_{\mathrm{th}}^{3}, \quad Z_{\mathrm{eff}} \equiv \sum_{\text {ions }} \frac{Z_{\mathrm{i}}^{2} n_{\mathrm{f}}}{n_{\mathrm{e}}}$
For $Z_{\text {eff }}=2$ and $E_{\mathrm{D}-\mathrm{NBI}}=30,60,90,120 \mathrm{keV} \Longrightarrow$
$P_{\text {D-NBI }}=\{77.84 \%, 75.85 \%, 70.97 \%, 64.71 \%\}$
Similar behavior when varied C_{\perp} in the bi-Maxwellian case
Fast ions absorption should decrease with something like $T_{\text {fast }}^{-3 / 2}$ (ions $(?)$

- This is due to the behavior of the function $f(\lambda)=\lambda I_{n} e^{-\lambda}$, which reached a maximum value at $\lambda=n^{2} / 3$.
For large $\lambda, f(\lambda) \propto \lambda^{-3 / 2}$ [See Stix's book \& Ono, PoP 1995]

P2F code: from particles list to distr. function

- P2F code was developed by D. L. Green (ORNL)
- P2F takes a particle list and creates a 4D ($\boldsymbol{R}, \boldsymbol{z} ; \boldsymbol{v}_{\|}, \boldsymbol{v}_{\perp}$) distribution function for use in a continuum code like TORIC
- At present it has essentially three modes:

1. build a 4D histogram giving a noisy distribution
2. uses Gaussian shape particles in velocity space to give smooth velocity space distributions at each point in space 3. distribute each particle along its orbit according to the percentage of bounce time

- Successfully tested starting with a particles list representing a Maxwellian

TORIC + P2F code: Maxwellian case

Procedure:
generate particle list representing a Maxw
run P2F to obtain a distribution function pre-compute χ with f above run TORIC with pre-computed χ compare TORIC with reference

$n_{\mathrm{e}}(\rho=0)=2.5 \times 10^{13} \mathrm{~cm}^{-3}$
$n_{\mathrm{e}}(\rho=1)=2.5 \times 10^{12} \mathrm{~cm}^{-3}$
$T_{\mathrm{e}}(\rho=0)=1 \mathrm{keV} ; T_{\mathrm{e}}(\rho=1)=0.1 \mathrm{keV}$ $n_{\mathrm{FI}}(\rho=0)=2.0 \times 10^{12} \mathrm{~cm}^{-3}$ $n_{\mathrm{FI}}(\rho=1)=2.0 \times 10^{11} \mathrm{~cm}^{-3}$ $T_{\mathrm{FI}}(\rho=1)=20 \mathrm{keV} ; T_{\mathrm{e}}(\rho=1)=5 \mathrm{keV}$ Parabolic profiles for $n_{\mathrm{e}}, T_{\mathrm{e}}$, and n_{FI} $T_{\mathrm{FI}}(\rho)=\left(T_{\mathrm{F}, 0}-T_{\mathrm{FI}, 1}\right)\left(1-\rho^{2}\right)^{5}+T_{\mathrm{FI}, \mathrm{i}}$ - Reference - 2 k particles _ 5k particles __10k particles _100k particles _ 1M particles

Total power differs by less than 1% among $10 \mathrm{k}, 100 \mathrm{k}$, and 1 M cases

NUBEAM particles list (NSTX shot 141711 without hhfw)

Procedure:

get NUBEAM particle list
 un P2F to obtain a distribution function

 pre-compute χ with f above run TORIC with pre-computed χ,compare TORIC run with standard TORIC

NSTX shot 1417 $P_{\text {NBI }}=2 \mathrm{MW}$

ompare TORIC run with standard TORIC
particles number $=53115$

Abs. fraction f Maxw. f non-Maxw. Electrons $41.80 \% \quad 37.99 \%$ D-NBI $\quad 53.94 \% \quad 58.12 \%$

Larger $P_{\mathrm{D}-\mathrm{NBI}}$ is expected due to a larger f tail formed by the RF application

RF kick operator in NUBEAM

- RF resonance condition in terms of $\boldsymbol{E}, \boldsymbol{\mu}$, and \boldsymbol{B}
$\Lambda^{\mathrm{rf}}\left(B, n, k_{\|}, E, \mu\right) \equiv n \frac{q B}{m_{\mathrm{i}}}+k_{\|} \sqrt{\frac{2}{m_{\mathrm{i}}}(E-\mu B)}-\omega_{\mathrm{rf}}$
- Monte-Carlo implementation of RF diffusion operator [X. Q. Xu and M. N. Rosenbluth, PoF B 3, 627 (1991), C. F. Kennel and F. Engelmann, PoF 9, 2377 (1966)]
$Q_{\mathrm{rf}}=D_{\mathrm{rf}}\left[\frac{\partial}{\partial V_{\|}}\left(\nu_{\|, s}^{\mathrm{rf}} f\right)+\frac{\partial}{\partial V_{\perp}^{2}}\left(\nu_{\perp, s}^{\mathrm{rf}} f\right)+\frac{\partial^{2}}{\partial V_{\|} \partial V_{\perp}^{2}}\left(\nu_{\| \perp}^{\mathrm{rf}} f\right)+\frac{1}{2} \frac{\partial^{2}}{\partial V_{\|}^{2}}\left(\nu_{\|}^{\mathrm{rf}} f\right)+\frac{1}{2} \frac{\partial^{2}}{\partial\left(V_{\perp}^{2}\right)^{2}}\left(\nu_{\perp, s}^{\mathrm{rf}} f\right)\right]$
$V_{\perp}^{\prime 2}=V_{\perp, 0}^{2}-\nu_{\perp, s}^{\mathrm{rf}} \Delta t+2 \sqrt{3}\left(R_{2}-0.5\right) \sqrt{\left[\nu_{\perp}^{\mathrm{rf}}-\frac{\left(\nu_{\|}^{\mathrm{rf}}\right)^{2}}{\nu_{\|}^{\mathrm{Lf}}}\right]} \Delta t+2 \sqrt{3}\left(R_{1}-0.5\right) \frac{\nu_{\| \perp}^{\mathrm{rf}}}{\nu_{\|}^{\mathrm{rf}}} \sqrt{\nu_{\|}^{\mathrm{rf}} \Delta t}$ $V_{\|}^{\prime}=V_{\perp, 0}\left(1-\nu_{\| s}^{\mathrm{rf}} \Delta t\right)+2 \sqrt{3}\left(R_{1}-0.5\right) \frac{\nu_{\| f}^{\mathrm{ff}}}{\nu_{\|}^{\mathrm{ff}}} \sqrt{\nu_{\|}^{\mathrm{ff}}} \Delta t$
- RF wave field information from TORIC:
$\boldsymbol{E}_{+}, \boldsymbol{E}_{-}$, and \boldsymbol{k}_{\perp} for each $\boldsymbol{n}_{\boldsymbol{\phi}}$

First and preliminary test of RF kick operator

Comparison between TORIC and NUBEAM + RF kick
operator assuming a Maxw. distribution at the deposition

