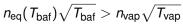


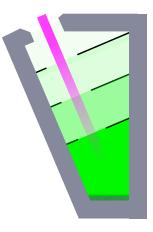
A lithium vapor box test stand experiment

J.A. Schwartz, R. J. Goldston, M.A. Jaworski

Princeton Plasma Physics Lab APS DPP, San Jose, CA, Nov 3rd

Motivation


- Solid divertors can only work with > 90% volumetrically radiated power
 - SOL widths appear not to scale with reactor *R*, leading to very high parallel heat fluxes
 - angles between \vec{B} and a divertor plate are limited by engineering tolerances, preventing arbitrarily low heat fluxes on a plate.
- Detached divertors with gas puffing can lead to MARFEs when the detachment front is unstable[1] [2].


It is desirable for a divertor technology to have a large stability window, or a physics-based feedback mechanism.

The lithium vapor box divertor (VBD)

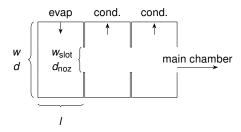
- A chamber filled with lithium vapor with margin in *nl* to extinguish the maximum expected heat flux.
- Lithium evaporates from the lowest chamber and is redeposited at upper chambers.
- To prevent efflux of vapor, create shocks by making baffles reflecting: have the baffle temperature greater than the local vapor density's saturation temperature:

Vapor box comparison to gas puff

In contrast to gas puffing detachment schemes, with the vapor box divertor,

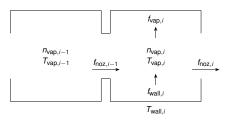
- gas must be pumped, but vapor is condensable by cool surfaces.
- a strong gradient of impurity density may yield stable detachment.
- higher power input should quickly evolve more vapor.
- controlling wall temperatures provides control over heat extraction as a function of position

Validating this concept before tokamak use


Open questions with the VBD:

- 1. Can the Li cloud be contained by baffles and condensing surfaces, both without and with plasma?
- 2. What Li vapor density yields detachment?
- 3. Can the plasma power be transmitted to latent heat of Li to spread heat over large areas?
- 4. When detached operation is reached, how much Li is advected/diffused upstream in the plasma toward the core?

A cylindrical-geometry test stand with similar T_{vap} , n_{vap} , n_e can test this concept.



Li vapor flow without plasma determines possible operating mode

- · Specify geometry and wall temperatures
- Choked flow through nozzles/slots
- Assume that vapor in the center of the boxes is homogenized by standing shocks.

Simple model describes 0-D solution for n boxes

This model solves for $n_{vap,i}$ and $T_{vap,i}$ from flows *f* of vapor into and out of the *i*th chamber. Only the geometry and $T_{wall,i}$ must be specified. Model from [3].

$$f_{\text{wall},i} [s^{-1}] = A_{\text{wall},i} \Gamma_{\text{Lang},i} \qquad f_{\text{noz},i} [s^{-1}] = 0.6288 A_{\text{noz},i} n_{\text{vap}} \sqrt{\frac{k T_{\text{vap},i}}{2\pi m_{\text{Li}}}}$$
$$f_{\text{vap},i} [s^{-1}] = A_{\text{wall},i} n_{\text{vap}} \sqrt{\frac{k T_{\text{vap},i}}{2\pi m_{\text{Li}}}} \qquad \Gamma_{\text{Lang}} [m^{-2} s^{-1}] = n_{\text{eq}} \sqrt{\frac{k T_{\text{wall}}}{2\pi m_{\text{Li}}}}$$

Implementation for an NSTX-U sized device

Geometry R = 1 m, l = 10 cm, w = 15 cm, $w_{\text{slot}} = 5 \text{ cm}$.

	1	2	3
<i>T_{wall}</i> [◦] C	625	475	350
<i>T_{vap}</i> °C	625	617	617
n_{vap} m ⁻³	$8.09 imes10^{20}$	$2.42 imes10^{20}$	$6.86 imes10^{19}$
p _{vap} Pa	10	2.98	0.843
Mass flow kg/s	$1.91 imes10^{-3}$	$5.69 imes10^{-4}$	$1.61 imes10^{-4}$
Mass flow kg/h	6.87	2.05	0.580
Latent heat flow kW	40.7	12.1	3.43
Enthalpy flow kW	5.14	1.52	0.43
Kn	0.0356	0.119	0.42

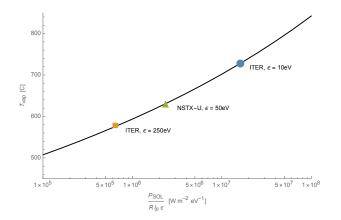
Efflux from last box > 300g/h indicates that vapor box **should not** be kept hot between shots. Knudsen number in the 'transitional' regime (0.01-10) means a fluid model is not strictly applicable.

NSTX-U

J.A. Schwartz | A lithium vapor box expt | APS DPP, San Jose, CA, Nov 3rd | 8

A simple detachment model

Estimate the Li vapor temperature requried to dissipate energy of the divertor plasma in the final vapor box chamber.


- Lithium vapor flux into each side of the plasma sheet is $n_{\rm vap} \sqrt{kT_{\rm vap}/(2\pi m_{\rm Li})}$
- Each Li atom dissipates ϵ eV of energy.
- Two-sided area of plasma sheet is $2 * 2\pi R I$.

$$P_{sol} = 4\pi R \$$
 l $n_{
m vap}(T) \sqrt{rac{T_{
m vap}}{2\pi \ m_{
m Li}}} \ \epsilon$

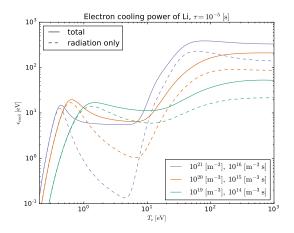
Limitations: value of ϵ is not well understood: not constant for each atom, and varies by divertor conditions. **2D effects** such as the thickness of the divertor plasma could prevent neutral Li from cooling the center.

NSTX-U, ITER require reasonable vapor temperatures for wide range of ϵ

Temperature required to generate enough Li vapor such that the entire P_{SOL} is radiated by Li atoms entering the plasma, as a function of $P_{SOL}/Rl_{\rho}\epsilon$. Three example points are given: ITER ($P_{SOL} = 100 \text{ MW}$, R = 6.2 m, $l_{\rho} = 10 \text{ cm}$) at $\epsilon = 10 \text{ eV}$ and $\epsilon = 250 \text{ eV}$, and NSTX-U ($P_{SOL} = 10 \text{ MW}$, R = 0.85 m, $l_{\rho} = 10 \text{ cm}$) at $\epsilon = 50 \text{ eV}$.

Radiative cooling estimated with CR ADAS database

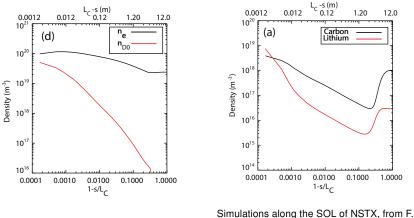
Can estimate ϵ using a collisional-radiative model:


- Specified *n_e*, *T_e* for a hydrogen plasma.
- · Li atoms enter as neutrals and ionize, radiate.
- Li particles are lost with a characteristic decay time τ .

$$\frac{\partial n_{(i)}}{\partial t} = n_e n_{(i-1)} \operatorname{SCD}_{(i-1)} - n_e n_{(i)} \operatorname{SCD}_{(i)} \qquad \frac{\partial n_{(0)}}{\partial t} + = 1/\tau + n_e n_{(i+1)} \operatorname{ACD}_{(i+1)} - n_e n_{(i)} \operatorname{ACD}_{(i)} - n_{(i)}/\tau$$

$$L_z = (\mathsf{PLT}_{(i)} + \mathsf{PRB}_{(i)}) \qquad \epsilon = L_z n_e \tau$$

Rates SCD, ACD, PLT, PRB(n_e, T_e) from ADAS. Does not account for transport: local density and temperature change over time, and the decay time τ can only be estimated.


Cooling per ion strongly varies with plasma parameters

Electron cooling energy of a single injected neutral atom at $n_e = 10^{19} \text{ m}^{-3}$ to 10^{21} m^{-3} and a specified T_e and over a lifetime of $\tau = 10^{-5} \text{ s}$.

Li concentration varies by ×800 in simulations

Simulations along the SOL of NSTX, from F. Scotti's thesis [4]

 c_{Li} varies from 0.08 to $10^{-5} \implies$ Include this effect in models.

J.A. Schwartz | A lithium vapor box expt | APS DPP, San Jose, CA, Nov 3rd | 13

Theory for Li transport in a low-impurity-fraction plasma

Forces on impurities in a hydrogen-dominated plasma: [5, 4]:

$$m_{z}\frac{d}{ds_{\parallel}}\left(n_{z}v_{z}^{2}\right) = m_{z}n_{z}\frac{v_{i}-v_{z}}{\tau_{s}} + Zen_{z}E + n_{z}(\alpha_{e}+\beta_{i})\frac{dT}{ds_{\parallel}}$$

- Electric force $F_E = Zen_z E$
- Temperature gradient force $F_{\nabla T} = n_z (\alpha_e + \beta_i) \frac{\partial T}{\partial s_{\parallel}}$
- Friction force $F_f = m_z n_z \frac{v_i v_z}{\tau_s}$

🚺 NSTX-U

No impurity pressure force — trace impurity limit

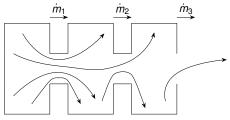
Where
$$\alpha_e = 0.71Z^2$$
; $\beta_i = \frac{3(\mu + 5\sqrt{2}Z^2(1.1\mu^{5/2} - 0.35\mu^{3/2}) - 1)}{2.6 - 2\mu + 5.4\mu^2}$
 $\mu = \frac{m_z}{m_z + m_i}$; $\tau_s = \frac{1.47 \times 10^{13} \frac{m_z}{m_p} T_z \left(\frac{T_i}{m_i/m_p}\right)^{1/2}}{\left(1 + \frac{m_i}{m_z}\right) nZ^2 \log(\Lambda)}$

A test-stand experiment

Without plasma at PPPL, and then *with* plasma on Magnum-PSI at DIFFER.

- · Several vapor box chambers to study the flow of Li
 - coupled by valves, so that the first chamber can be heated without introducing Li into the second.
 - be able to be disassembled
 - measurement of mass change due to Li buildup
 - outfitted with thermocouples
 - to measure temperature at several points on their surface
 - infer radiated power
 - with heating power of a few kW per chamber
 - and similar amounts of cooling power, for steady-state experiments on Magnum-PSI
 - with cooling-fluid calorimetry to measure energy transport

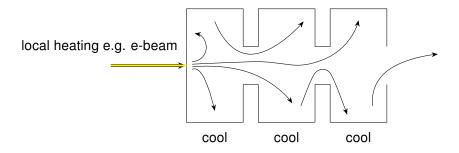
Test stand with matched Kn is reasonable size


3 boxes of $l = 15 \text{ cm}, d = 15 \text{ cm}, d_{noz} = 5 \text{ cm}.$

<i>T_{wall}</i> °C	617	561	514
<i>T_{vap}</i> °C	617	569	522
$n_{vap} \text{ m}^{-3}$	$8.01 imes10^{20}$	$2.43 imes10^{20}$	$6.94 imes10^{19}$
<i>p_{vap}</i> Pa	9.84	2.82	0.762
Mass flow kg/s	$1.18 imes10^{-5}$	$3.47 imes10^{-6}$	$9.64 imes10^{-7}$
Mass flow g/15min	11	3.1	0.87
Latent heat flow W	251	73.9	20.5
Enthalpy flow W	$3.14 imes10^{1}$	8.75	2.3
Kn	$3.59 imes10^{-2}$	$1.18 imes 10^{-1}$	$4.15 imes 10^{-1}$
ϵ for $\epsilon A_{wall} \sigma T^4$ assumed	0.03	0.2	0.1
$\epsilon A_{\sf wall} \sigma T^4 \; {\sf W}$	85.7	334	133
Heating power req'd W	517	300	41

Experiment with heating walls

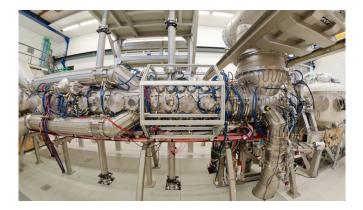
- 1. Hold constant T_{wall} .
- 2. Wait.
- 3. Measure masses.



heat 625 °C heat 475 °C heat 350 °C

- · Test the condensation of Li on surfaces to limit efflux
- · Validate DSMC models of neutral flow.
- Provides a comparison to the box with plasma
 - test plasma plugging of the vapor.

Experiment with non-uniform heating

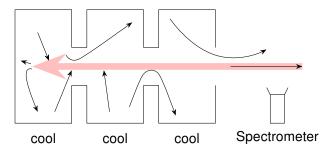

- Test response of the vapor box to localized heating:
 - heating profile should be similar to that of an attached plasma.
- Test for local dryout of Li by measuring the temperature close to heating point

Interpretation and validation: DSMC code

- Typical Knudsen number for flow in the vapor box is between 0.01-1, the 'transitional' regime between fluid dynamics and rarefied gas dynamics.
- Traditional fluid code is not appropriate.
- The Direct Simulation Monte Carlo (DSMC) method is suited for this regime[6]:
 - Model Li surfaces as emitting Maxwellian-distributed particles
 - Particles hitting those surfaces are absorbed
 - Surfaces with specular or random-direction reflection

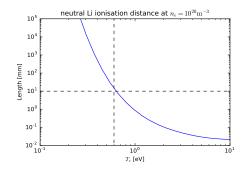
The OpenFOAM code implements a DSMC model that should be suitable.

Magnum-PSI provides suitable plasma



Pic from https://www.differ.nl/magnum_plasma_en

 $q_{\parallel}pprox$ 10 MW/m² over a 3 cm diameter, n_epprox 2 imes 10²⁰ m⁻³, T_epprox 3 eV.



Experiments at Magnum-PSI

- · changes in Li neutral transport with plasma
- vapor box start-up heating by plasma
- the vapor density and temperature required for detachment
- upstream contamination by transport of Li through the plasma
- power deposition profiles

Li ionization length in Magnum-PSI

Typical ionization distance for a Li atom moving at 1km/s at $n_e = 10^{20} \text{ m}^{-3}$ as a function of T_e .

Li vapor atoms will still ionize in Magnum-PSI as long as $T_e \gtrsim 0.6 \text{ eV}$ and $n_e L \gtrsim 10^{18} \text{ m}^{-2}$.

Plasma pressure for detachment is OK

Magnum-PSI plasma cylinder l = 15 cm, r = 1.65 cm.

Input power [kW]	<i>n_e</i> [m ^{−3}]	<i>T_e</i> [eV]	<i>n_eT_e</i> [Pa]
8.5	1.75 × 10 ²⁰	3	84
€ [eV]	Flux $[m^{-2}s^{-1}]$	<i>T</i> _{vap} [°C]	<i>p</i> _{vap} [Pa]
0.95 ^R	3.6 × 10 ²⁴	734	115
6.0	5.7 × 10 ²³	640	19

Calculations for vapor temperature in the 1st chamber to dissipate the plasma input power in Magnum. ^{*R*} represents cooling energy from radiation only; else includes ionisation energy.

 $p_{\text{plasma}} > p_{\text{vap}}$ so the plasma is plugging the vapor.

Experiments inform future models

Perhaps a 1D multi-fluid model with

- radiation and ionization ϵ
- · main ion and impurity fluids
- + DSMC neutral vapor transport (loosely coupled)

Or a 2D model like UEDGE or SOLPS if finite SOL width or flow reversal are important.

Summary

- The lithium vapor box divertor is a potential solution to future tokamaks' high SOL power and heat flux.
- · We plan to build and test a vapor box simulator to study
 - vapor efflux from the box.
 - redistribution of heat by lithium vapor.
 - necessary lithium vapor density and temperature to create a detached plasma.
 - lithium contamination of plasma upstream of the box.
- The first two of these will be characterized without plasma here at PPPL, and all of them will be studied with plasma input at Magnum-PSI.

References

[1] Ian H. Hutchinson.

Thermal front analysis of detached divertors and MARFEs. *Nuclear Fusion*, 34(10):1337, 1994.

- [2] Bruce Lipschultz, Felix I. Parra, and Ian H. Hutchinson. Sensitivity of detachment extent to magnetic configuration and external parameters. *Nuclear Fusion*, 56(5):056007, May 2016.
- [3] R.A. Myers.

A Lithium Vapor-Box Divertor for Tokamak Applications. Undergraduate Thesis, Princeton University, Princeton, NJ, May 2015.

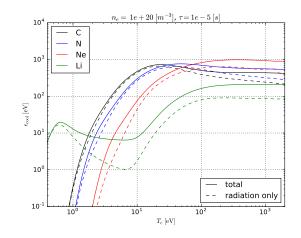
[4] Filippo Scotti.

Modifications of Impurity Transport and Divertor Sources by Lithium Wall Conditioning in the NSTX.

PhD thesis, Princeton University, January 2014.

[5] P. C. Stangeby. The plasma boundary of magnetic fusion devices. Plasma Physics Series, Taylor & Francis Group, New York, NY, 2000.

[6] H J N van Eck, T A R Hansen, A W Kløyn, H J van der Meiden, D C Schram, and P A Zeijlmans van Emmichoven. A differentially pumped argon plasma in the linear plasma generator Magnum-PSI: gas flow and dynamics of the ionized fraction. *Plasma Sources Science and Technology*, 20(4):045016, August 2011.


Thanks to Chris Jagoe for work OpenFOAM's relevance for VBD design.

This work supported by supported by U.S. DOE Contract No. DE-AC02-09CH11466.

Li is a better coolant than C, N, Ne at low T_e

At this density and lifetime, Li is a stronger electron coolant than C, N, Ne at $T_e < 1.5$ eV.

Electron cooling power of C, N, Ne, and Li at $n_e = 10^{20} \text{ m}^{-3}$ and a specified temperature and over a lifetime of $\tau = 10^{-5} \text{ s.}$

J.A. Schwartz | A lithium vapor box expt | APS DPP, San Jose, CA, Nov 3rd | 28