

llii:

PSEC

Alcator C-Mod

Multi-energy x-ray cameras for T_e and n_z profile measurements in NSTX-U

Luis F. Delgado-Aparicio, K. W. Hill, R. Bell, N. Pablant, J. Maddox, R. Ellis and B. Stratton (PPPL)

58th Annual Meeting of the APS Division of Plasma Physics October 31st - November 3rd, 2016, San Jose, California, USA

New technology for developing multi-energy soft x-ray diagnostics is now available

Thanks to important advances in the x-ray detector technology it is now possible to simultaneously record high resolution images of x-ray photons at multiple energy ranges through direct x-ray detection.

L. Delgado-Aparicio, APS-DPP, San Jose, California, USA, 10/31-11/04/2016

Motivation: Develop ME-SXR imaging for MCF plasmas with a unique capability

A unique opportunity of measuring, <u>simultaneously</u>, a variety of important plasma properties:

a) central electron temperature $(T_{e,0})$ and profiles $(T_e(R,t))$ b) medium- to high-Z impurity concentrations $(n_Z \text{ and } \Delta Z_{eff})$ c) the birth of suprathermal e⁻ $(n_{e,fast})$

Especially applicable for:

Spherical tokamaks: No T_e ECE-measurements in STs due to low-B_{ϕ} Burning plasmas: Complement other techniques such as TS and ECE

GOAL: Extract local parameters from the SXR emission in tokamak plasmas

 v_{ϕ} : toroidal velocity, M_Z: ion mass

 $T_{filter}(E_{ph})$: transmission function of filter

Detector response: S(E_{ph})

Photon counting ME–SXR systems use Si(Li), Hgl₂, Si-Ge-CdTe diodes and SDDs

- **Detectors in photon-counting mode** Single-chord spectrometers $(\mathbf{1})$ $(<T_{e}>, <Z_{eff}>, <n_{e,fast}>, <n_{Z}>)$
 - Pulse height analysis (PHA)
 - Good energy resolution (100–200 eV)
 - Slow time-response (20-50 ms)
 - Low efficiency at high-energies

Y. Shi-RSI'04, Z. Y Chen – NIMA'04, PST'05, T.

- Very poor profile definition
- Still used in our community (HT7, TCV, HL-2A)

NSTX-U

One spectrum per instrument

E. H. Silver-RSI'82, J. E. Rice-PRA'82

ME-SXR concepts in current mode used various filters, scintillators+PMTs, Si-diodes

- 2 Multi-foil arrays in current-mode (T_e and n_z profiles)
 - Better profile definition:
 - Line integrated measurements
 - Tomographic reconstructions
 - Tangential view is preferable
 - Fast time-response (1 ms to 1 μ s)
 - Low efficiency at high-energies
 - Easy to avoid low-Z emission.
 - Poor energy resolution (1–5 keV)
 - Difficult to interpret in the presence of medium- to high-Z impurities
 - Still, good T_e measurements!

ME-SXR & Thomson Scattering "combo" provided fast T_e(R,t) measurements in NSTX

Line-emission from high-Z metals introduces challenges to the multi-foil technique

Nominal 5-7 year plan for implementation of high-Z wall in NSTX-U

NSTX-U

Pilatus cameras enable breakthrough of 100k pixels (minimum) at multiple energy ranges

Operates in single photon counting mode

CMOS hybrid pixel technology developed originally for synchrotrons

Photon counting circuit in each pixel

• The comparator voltage of the readout chip (V_{cmp}) controls the *global* threshold energy.

• The threshold energy can be individually *refined/trimmed* using and in-pixel 6-bits DAC (V_{trim}).

🚺 NSTX-U

V_{Comp} & V_{trim} allows individual coarse & fine tuning of energy range with E_{width} =0.6 keV

Photon counting circuit in each pixel

NSTX-U

"Constant" width of electronic response is a great improvement over the use of filters

L. Delgado-Aparicio, APS-DPP, San Jose, California, USA, 10/31-11/04/2016

From sampling the continuum radiation from Ar & Mo one can measure $T_e \& n_e^2 Z_{eff}$

L. Delgado-Aparicio, APS-DPP, San Jose, California, USA, 10/31-11/04/2016

Detector response with 2≤E_{cut}≤6 keV can be used to constrain Ar and Moly density

L. Delgado-Aparicio, APS-DPP, San Jose, California, USA, 10/31-11/04/2016

First multi-energy Pilatus tests were conducted at C-Mod @ MIT-PSFC in 2012

NSTX-U

L. Delgado-Aparicio, APS-DPP, San Jose, California, USA, 10/31-11/04/2016

Imaging tests at Alcator C-Mod combined the best features from PHA & foil methods

Mapping of mid-plane data is needed to account for centrifugal asymmetries in n_z

NSTX-U

Solutions for electrostatic potential ($\Delta \phi$) and impurity density show in/out asymmetries

L. Delgado-Aparicio, APS-DPP, San Jose, California, USA, 10/31-11/04/2016

Core bremsstrahlung emission from main ion and fully stripped low-Z impurities is small

L. Delgado-Aparicio, APS-DPP, San Jose, California, USA, 10/31-11/04/2016

Core radiation from high-Z impurities will be affected by centrifugal forces in NSTX-U

L. Delgado-Aparicio, APS-DPP, San Jose, California, USA, 10/31-11/04/2016

Tangential and vertical ME-SXR views are crucial to study impurity asymmetries and transport

• Tangential view will facilitate inversion at mid-plane using matrixbased Abelreconstruction.

• Radial/vertical view will be useful to estimate level of poloidal asymmetry.

• Different energy ranges will be helpful for discriminating between Ar, Fe & Mo.

New tangential view for ME-SXR camera is available after redesigning port cover

• Include in the model an 11/16" thick 4–1/2" CF–flange for vacuum filter/ wall + pin-hole combo

<u>Centered pinhole option (thick lines)</u>

- R_{tg,max}~151.38 cm
- R_{tg,min}~55.84 cm
 90% of the detector will be used
- Mid-plane coverage ~ 95.5 cm
- $\Delta R \sim 0.2 \text{ cm/pixel}$

<u>Off-centering the pinhole ¼" (thin lines)</u>

- R_{tg,max}~144.9 cm
- $R_{tg,min}$ ~50.43 cm
- Mid-plane coverage ~ 94.5 cm

New conical adapter was included in the design to get a viewing angle of ~30°

NSTX-U

Tangential multi-energy camera will resolve SXR emission from low- to high-field sides

NSTX-U

Small vacuum enclosure will house Pilatus3 detector to ensure low-energy sensitivity

Pilatus3 front-end prepared for vacuum

Vacuum-side

Air-side

- a) He-atmosphere inside the detector housing can also be used to avoid attenuation in air.
- b) Rough-vacuum will minimize risks of He around port.

Custom made electronics box solution will be taken out of the magnetic field

Pilatus3 back-end

- a) Back-end electronics is sensitive to toroidal and poloidal fields (recently tested for ITER-XICS).
- b) 2m data cable will connect camera and back-end electronics.

Pilatus3 front-end prepared for vacuum

Pilatus3 cooling feedthrough

Vertical view is excellent complement but design and installation impose challenges

🚺 NSTX-U

Top view allows x-ray coverage from both LFS and HFS (R_{min}~0.7 to R_{max}~1.5 m)

- Displacing the pinhole 6 mm to the LFS results in a sightline displacement of ~ 5 cm
- Drawing may not reflect blockage from NSTX-U's umbrella and and support plate.
- Re-entrant solution is being considered.

New PILATUS3 detector technology allows SXR detection from 1.6-1.8 to 10-20 keV

L. Delgado-Aparicio, APS-DPP, San Jose, California, USA, 10/31-11/04/2016

Pilatus3 detector technology will be used in NSTX-U for impurity transport research

Pilatus3 enhanced sensitivity:

- Sensitive to Mo-emission (PFCs).
- Ca, Fe, Mo & W emission (laser-blow-off injection)
- Non-parallel photon counting technology > 10⁷ ph/s/pixel
- Optimization of energy ranges
- ME-SXR tomography
- B_{max}: B_{DC}~2.5 T, dB/dt~3T/s
- Neutron fluence up to 10¹⁴ n_{eq}/ cm²

Physics program considers also the study & control of Z-transport and Z-induced-MHD

- 1. Study the role of neoclassical (including rotation effects) and turbulent impurity transport (TEP, TD and || compressibility).
- Impurity peaking vs rotation and heating. 2.
- Effects of impurities on MHD at q=1 and q=23.
- Control using NBI, RF, RMPs, droplets, LBO, Li 4.

NSTX-U

L. Delgado-Aparicio, APS-DPP, San Jose, California, USA, 10/31-11/04/2016

On

axis

a=2

b)

Summary

- 1. ME-SXR imaging provides a unique opportunity of measuring, <u>simultaneously</u>, a variety of important plasma properties (T_e , $n_{Z (e.g. Ar, Ca, Fe, Mo, W)}$, ΔZ_{eff} and $n_{e,fast}$).
- Pilatus2 and Pilatus3 technology allows for individually selecting (64) energy ranges for all its 10⁵ – nearly 10⁷ pixels.
- 3. Two views are being considered for NSTX-U.
- 4. Test validity of ME-SXR analysis for L-mode and H-modes [inversion, Ω effects & impurity mix].
- Limitation of Si above 20 keV for study of non-Maxwellian tails. Use higher-Z materials such as Ge, GaAs or CdTe (~100 keV).