## **NSTX-U & Radiation Diagnostics**

Source of the second se

**OPPL OPPL OPPL** 

### accurate radiation measurements contribute to high level NSTX-U research objectives

- demonstrate stationary operation at performance that extrapolates to  $\geq$  1MW/m<sup>2</sup> neutron wall loading in FNSF - utilize core radiation for power balance, metallic impurity estimates
- develop and utilize the high-flux-expansion "snowflake" divertor combined w/ radiative detachment to mitigate heat fluxes
- physics progress benefits from knowing divertor/edge radiation
- begin to assess high-Z PFCs plus liquid lithium to develop high-duty-factor integrated PMI solutions for FSNF & beyond
- core P<sub>RAD</sub> to asses high-Z and divertor P<sub>RAD</sub> for vapor shielding

### long term **CAK** RIDGE collaboration goal is to demonstrate **ST power balance** (see T. Gray NP10.00049 for heat flux diagnostics)

| Total Power Accountability<br>LSN power scan Ip = 0.8 MA, BT = 4.5kG |                 |       |          |   |    |          |   |
|----------------------------------------------------------------------|-----------------|-------|----------|---|----|----------|---|
| Í                                                                    | NB              | Los   | S        |   |    |          |   |
| ver (MW)                                                             | P <sub>RA</sub> | D,COF | RE       |   |    | 1        |   |
|                                                                      | P <sub>RA</sub> | D,DIV |          |   |    |          |   |
| unted Poi                                                            | P <sub>DI</sub> | /,IR  |          |   |    |          |   |
| otal Acco                                                            |                 |       |          | • |    | <b>A</b> |   |
| ►2                                                                   | /               | *     | <u>_</u> |   | •  | •        |   |
| 1                                                                    | 4 <u>1</u>      | 12    | •••      |   | NS | ΤΧ       |   |
| 0                                                                    | :               | 2     | 3 J      | ŧ | 5  | 6        | ; |

- prior attempts [S. Paul JNM 2005] could only account for ~60% of the input power
- reliable power balance important when extrapolating designs
- avoid intensifying localized losses (NBI losses)
- will likely need to account for 3D too!

### • upgraded radiation tools compliment new **NSTX-U** diagnostics and modeling activities

- UV/visible spec. Soukhanovskii, RSI 77, 10F127 (2006), RSI 81, 10D723 (2010)
- VUV transmission grating imaging spec. Tritz, PPCF 56 125014 (2014)
- boundary modeling of snowflakes O. Izacard (NP10.0030)
- VUV/SXR spectroscopy M.E. Weller (NP10.00152) and ME-SXR imaging Delgado-Aparicio (NP10.00046) for core impurities

### previous NSTX radiation diagnostics insufficient to support NSTX-U mission

- 16 CH midplane AXUV diode array (sensistivity issues)
- 16 CH of divertor resistive bolometers (did not survive bake)







### • simple estimates using radiated power fractions show NSTX-U signals should be measurable



# What Makes a Good Bolometer?

## approximately flat, known responsive over photon energy range of plasma emission

– bolometers use temperature rise of an absorber



## can be deployed in large compact arrays at reasonable cost, to enable tomography



- resistive bolometers can 'pick-up' ICRF heating in cases of weak(er) single pass absorption
- magnet systems used in feedback control can provide a low-level of increased noise

infrared video bolometers (IRVB) which are noise resistant and great for 2D imaging, but are more difficult to field in arbitrary locations

## has low Noise Equivalent Power Density (NEPD)



# **Development of Radiated Power Diagnostics for NSTX-U**

M.L. Reinke<sup>1</sup>, G.G. van Eden<sup>2</sup>, B. Peterson<sup>3</sup>, J. Lovell<sup>4</sup>, R. Chandra<sup>5</sup>, T. Gray<sup>1</sup>, J.L. Terry<sup>6</sup>, M. Han<sup>7</sup>, B. Stratton<sup>8</sup> and R. Ellis<sup>8</sup> <sup>1</sup>Oak Ridge National Laboratory, <sup>2</sup>DIFFER, <sup>3</sup>National Institute for Fusion Science, <sup>4</sup>Durham University, <sup>5</sup>University of Washington, <sup>6</sup>MIT Plasma Science and Fusion Center, <sup>7</sup>University of Nebraska, <sup>8</sup>Princeton Plasma Physics Laboratory

- AXUV diodes responsivity changes after plasma exposure
  - plasma, P<sub>RAD</sub> off by ~x3, Z-dependent due change in manufacturer's specs

- 4-ch sensor is 7.5 k\$, electronics + wiring feedthrus comes to 25 k\$
- good for 1-D arrays, bad for 2D imaging





- for fixed spatial resolution, dy, the power density at the sensor is independent of the size and location of the sensor if  $A_{ap} \sim A_{det}$  $- P_{det}/A_{det}$  must exceed the Noise Equivalent Power Density (NEPD)

# **Upgraded Divertor Bolometers**



## Midplane Tangential Bolometers





## • traditional resistive bolo. use analog analyzers

### advantages of FPGA approach

- compact, low cost (< 0.5 k/ch)
- DAC drives bridge, precision ADC measures imbalance
- signal processing done in FPGA
- DAC can apply voltage waveform of arbitrary frequency, allowing drive voltage to be 'tuned' to the room environment



see: J. Lovell, et all Proceeding of the 1<sup>st</sup> EPS Conference on Plasma Diagnostics 1 137 (2015)

## • primary concern to improve ability to survive the bake and also reorient views for NSTX-U

- re-entrant pinhole cameras view between passive plates – cooling active only during bake (300+ degC)





### new diagnostic capability for NSTX-U, goal to measure full midplane emissivity profile (24 CH)

- scoping study to specify the number of channels needed
- assume 2 MW  $P_{RAD}$ , 2% + 10  $\mu$ W noise, NSTX-U equilibrium
- use same  $\Delta R_{TANG}$ , #CH increases, pinhole/det. distance increase
- fCOS = ratio of outer and inner emissivity (LFS-HFS)/(LFS+HFS) = 0.0
- **PRAD=** total radiated power from profiles, resolving 'cosine' term = 2.0
- fPEAK= ratio of radiation  $\psi_n < 0.4$  and  $\psi_n > 0.4 = 1.15, 1.10, 0.23$















**87**, 11E708 (2016) for more details

48-channel analyzer from D-tAcq

Drawing 3: 6y BOLO8BLE in ACO2006 - 48 Channel System