

Thomson Scattering on NSTX-U NP10.00048

B.P. LeBlanc and A. Diallo

58th Annual Meeting of the APS Division of Plasma Physics San Jose, California

October 31 - November 4, 2016 •

Outline: MPTS Upgrades for NSTX-U

- New laser beam path and delivery
 - Re-aimed laser beam path to accommodate larger CS
 - Beam delivery optics and hardware with increased aperture
 - Increased path to beam dump to delay stray laser light
 - New laser enclosure for last steering mirror on input path
- Reconfigured collection optics
 - Use same fiber-optics bundle assembly (FOA) and spherical mirror
 - New FOA manipulator
 - Improvement for dust reduction
- Scattered light measurement
 - 42 radial positions up from 30 previously
 - Ten polychromators reconfigured for better Rayleigh light immunity
- Plans for the Pulse Bursting Laser System (PBLS)

Beam Path closer to Center Stack 8 cm for NSTX-U vs. 10 cm for NSTX

Bay F during NSTX-U Upgrade Construction MPTS equipment removed

Bringing back Collection Optics Box to NTSX-U

COB above south radiation wall

Bay F after MPTS Deployment

New Laser Optics Enclosure in Test Cell

Top View of Arrangement in Test Cell

Fiber Optics Assembly adjustment for imaging along new laser beam path

Images of Split Fiber Bundles: Separation made at output end

Improved Spatial Resolution Reduced radial array spacing

MPTS has a total of 42 radial channels First Light for 12 New Channels Obtained on NSTX-U

New 12-high polychromator tower

6-filter polychromator

PPPL "low readout noise" preamplifiers

42-Radial Position Profiles Twelve new polychromators marked with dotted line

NSTXU shot 104500

Pulsed Bursting Laser System

- A laser operating on a base line of 30 Hz, but capable of two burst modes
 - Slow burst: 50 pulses at 1 KHzFast burst: 50 pulses at 10 kHz
- PBLS made possible by Ahmed Diallo winning DOE Early Career Research Program
 - Work done in collaboration with
 D. Den Hartog of UW and PSL
 - PBLS will supplement two existing 30-Hz lasers

Laser Head

Quantel Laser Head used on PBLS

PBLS Time Patterns

Scatter Plot Te vs.ne for last Run

1025 NSTX-U shots, 1861350 data points

MPTS availability > 96% during last run

Future Plans

- Complete installation of illumination probe
- Proceed with modification of the laser system
 - Combine the 2 existing Nd:YAG lasers on a single beam line
 - Install the PBLS
 - Power supply to be located below the floor of the laser room
 - PBLS Quantel laser head to be installed on existing cradle in the laser room
 - The 3 lasers Nd: YAG lasers should provide
 - A 90-Hz base line combined with capability for
 - Slow burst: 50 pulses at 1 kHz, or
 - Fast burst: 50 pulses at 10 kHz.
- Align and calibrate for NSTX-U next run