- Lower divertor infrared cameras installed and commissioned
- Initial data collected on NSTX-U during the FY16 run campaign
- Upper divertor, fast, IR camera is being installed during the outage
- Additionally adding IR coverage of the inner strike points
- Ongoing research into advanced, multi-spectral and hyperspectral infrared imaging of PFC surfaces

Motivation

- Mitigating divertor heat flux to acceptable material limits is one of the biggest challenges facing fusion
- Projected NSTX-U characteristics:
 - I_p \leq 2 MA, P_{NBI} \leq 12 MW, 5 second pulse
 - $q_{pk, Inter-ELM} > 20 MW/m^2$
- Accurately measuring divertor surface temperature is challenging in the divertor environment
 - Need to measure a wide range of surface temperatures at high speed (<1 ms)
 - Inter-ELM vs. intra-ELM
 - Eroding and redeposition of PFC material
 - Mixed material environment
 - Be + W for JET and ITER
 - Li/B + C/Mo for NSTX-U

NSTX-U will access new physics with 2 major new tools:

2. Tangential 2nd Neutral Beam

Higher T, low ν* from low to high β → Unique regime, study new transport and stability physics

Full non-inductive current drive \rightarrow Not demonstrated in ST at high- β_T Essential for any future steady-state ST

Challenges of Thermography in a Fusion Environment

NSTX-U is a Mixed Material Environment

- Primarily ATJ Graphite plasma facing components (PFCs)
- Use of various wall conditioning techniques
 - Periodic Boronization via DC Glow discharge of Trimethylborane (Chemical symbol for this here)
 - Between discharge lithium evaporation
 - 10 300 mg per evaporation
- Planned incremental transition to metal walls – TZM Molybdenum
 - Row of tiles considered for next run campaign

APS-DPP - Infrared Thermography in NSTX-U, TK Gray (11/2/2016)

Dual-band IR Thermography has been Employed to Account for Changing Emissivity with the Introduction of Lithium

- Use of an image splitter to simultaneously image both IR bands
 - Long-wave (LWIR): 6.5-10 µm transmit with T_{avg}~92%
 - Medium-wave (MWIR): 4-6.5 µm reflect with T_{avg}~99%
- Assumes constant emissivity across both bands
 - $\epsilon_{MWIR} == \epsilon_{LWIR}$
 - Grey-body emission

🕕 NSTX-U

APS-DPP - Infrared Thermography in NSTX-U, TK Gray (11/2/2016)

High-Z tiles and effects of Erosion

- NSTX-U plans to incrementally transition away from C PFCs to Mo
- Mo is highly reflective in the IR
- Emissivity of Mo, ε_{Mo} varies as a function of wavelength
 - Up to 50% in the MWIR and LWIR bands
 - Violates fundamental assumptions of dual-band technique
- ε_{Mo} also varies with surface roughness, which will change in an eroding environment

Sand blasted W tiles in ASDEX-U to increase emissivity – Image courtesy of B. Sieglin, IPP-Garching

Emissivity of Mo vs wavelength for various surface finishes

🔘 NSTX-U

Current and Planned Infrared Measurements on NSTX-U

- Installed for FY16
 - Lower Divertor Outer Strike Point (Commissioning)
 - 1.6 kHz (128x128)
 - 15° field of view
 - Dual or single band IR Optics
 - 4 6.5µm and 6.5 10 µm
 - Lower Divertor Wide-angle View
 - 30 Hz (640x480)
 - Single band 7.5 13 μm
 - 120° field of view
- Planned for FY18
 - Upper Divertor Outer Strike Point
 - 1.6 kHz (128x128)
 - 15° field of view
 - Dual or single band IR Optics
 - $4-6.5 \mu m$ and $6.5-10 \ \mu m$
 - Lower Divertor Inner Strike Point
 - To be Determined
- Eventual goal is complete coverage of all strike points in NSTX-U for power balance studies

Fast IR Cameras Observe both the Upper and Lower Outer Strike Points

- Outer strike point cameras are:
 - Fast: 1.6 kHz frame rate (full frame)
 - Single or dual band optics
- Lower divertor fast IR camera installed for FY16 run campaign
 - Commissioning diagnostic when outage occurred
 - Limited single-band data acquired
- Upper divertor, fast IR installation is in progress
 - Expected completion before start of the next run campaign

Study of 3D Divertor physics with Installation of Wide Angle IR Camera

- Wide angle IR camera taking data during plasma operation
 - Nearly half of the lower divertor area is covered
 - 30 Hz, LWIR (8 14 $\mu m)$
- Important for 3-D physics study
 - Effect of error fields, internal MHD mode, and applied 3-D fields on divertor footprints
 - 3-D heat and particle flux, surface erosion studies, etc

Inner Strike Point Cameras will Complete IR Coverage of Divertors

- Inner strike point (ISP) is often obscured from other divertor views
 - ISP is along the vertical section of the center stack
 - Infrared emission decreases drastically at shallow angles
- 2 new cameras proposed to cover the upper and lower inner strike points in collaboration with University of Tennessee -Knoxville

Radiated Power Measurements Coupled with IR Thermography Enable Power Balance Studies

NSTX-U

- Installing upgraded versions of the lower divertor resistive bolometers
 - Bay J-Upper, Bay I-Lower (16 ch)
 - NSTX-U views with new thermal management
- New tangentially-viewing midplane resistive bolometer array
 - Bay G-Midplane (24 ch), full midplane array
- Utilize new D-tAcq elec. (P_{RAD} < 100 Hz)
 - real-time output possible, but not available initially
- Will need to expand coverage in FY18+ to ensure full plasma coverage
- See Poster NP10.00047, "Development of Radiated Power Diagnostics for NSTX-U" for more details

Ongoing Thermography Research

APS-DPP – Infrared Thermography in NSTX-U, TK Gray (11/2/2016)

Dual-band Thermography routinely used on NSTX but has Limitations

- Image registration errors between the 2 bands
- Lithium coatings on viewports affect IR absorption
 - Differential absorption in MWIR band vs LWIR
- Assumes constant emissivity across both bands
 - $\epsilon_{MWIR} == \epsilon_{LWIR}$
- Low of sensitivity at high temperatures
 - Theoretical 2x improvement in sensitivity at high temperature by moving to shorter wavelengths (3 5 µm)
 - Shorter wavelengths required for better sensitivity

Preliminary Design for Dual-Band Optics Utilizing Wollaston Prisms

- Utilize the birefringent properties of CdSe to split incoming photons
 - Introduces chromatic aberrations that need to be corrected
- Single optical path is more resilient to vibrations
- Similar field of view as the reflecting, dual-band optical design $\sim 8^{\circ}$ in each band
- Design then build and test a prototype

"Pushbroom" Multi-spectral Infrared Imaging

- Based off of similar techniques used in the visible and near IR
- Sacrifices 2D spatial measurement for 1D spatial (radial) and 1D spectral
 - Maintains fast frame rates using full frame
 - Adaptable to subwindowing of the sensor for faster frame rates
- Design is adaptable to true hyperspectral imaging using a coded aperture
 - Swap out slit for coded aperture
 - Yields 3D data cube (2D spatial, 1D spectral)

Conclusions

- Lower divertor infrared cameras installed and commissioned
 - Wide-angle fully commissioned and operational
 - Fast IR camera was partially commissioned
- Initial data collected on NSTX-U during the FY16 run campaign
- Upper divertor, fast, IR camera is being installed during the outage
- Additionally adding IR coverage of the inner strike points
- Ongoing research into advanced, multi-spectral and hyperspectral infrared imaging of PFC surfaces

Acknowledgements

The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

Request for Reprints?

APS-DPP – Infrared Thermography in NSTX-U, TK Gray (11/2/2016)