

Impact of physics and technology innovations on compact tokamak fusion pilot plants

Jonathan Menard (PPPL)

T. Brown, S. Gerhardt, R. Maingi, R. Majeski, Y. Zhai, L. El-Guebaly (UW Madison), and the NSTX-U team

58th Annual Meeting of the APS Division of Plasma Physics San Jose, California October 31 - November 4, 2016

Possible missions for fusion next-steps

1.Integrate high-performance, steady-state, exhaust

- Divertor test-tokamak DTT
- 2. Fusion-relevant neutron wall loading
 - \succ Γ_n ~ 1-2MW/m², fluence: ≥ 6MW-yr/m²
- 3. Tritium self-sufficiency
 - > Tritium breeding ratio TBR \geq 1
- 4. Electrical self-sufficiency

 \triangleright Q_{eng} >> 1, P_{electric} = 0.5-1 GWe

Possible missions for fusion next-steps

1.Integrate high-performance, steady-state, exhaust

- Divertor test-tokamak DTT
- 2.Fusion-relevant neutron wall loading
 - \succ Γ_n ~ 1-2MW/m², fluence: ≥ 6MW-yr/m²
- 3. Tritium self-sufficiency
 - > Tritium breeding ratio TBR \geq 1
- 4. Electrical self-sufficiency

Q_{eng} = P_{electric} / P_{consumed} ~ 1
 5.Large net electricity generation

 \triangleright Q_{eng} >> 1, P_{electric} = 0.5-1 GWe

This talk: assess possible innovations to achieve these missions in a single and more compact tokamak device

Outline

- Scalings for electricity gain
- Scalings for DT fusion gain
- Possible innovations for higher gain
- Example low-A pilot plant concept
- Summary

Electricity gain Q_{eng} determined primarily by engineering efficiencies and fusion gain $\eta_{th}(M_nP_n + P_\alpha + P_{aux} + P_{pump})$ Electricity produced Q_{eng}-Electricity consumed $\frac{P_{aux}}{P_{aux}} + P_{pump} + P_{sub} + P_{coils} + P_{control}$ η_{aux} $(4M_n + 1 + 5/Q + 5P_{pump} / P_{fus})$ $Q_{enq} = \eta_{th} \eta_{aux} Q \times$ $5(1 + \eta_{aux}QP_{extra} / P_{fus})$

 $\begin{array}{l} \eta_{th} & \equiv \mbox{thermal power conversion efficiency} \\ \eta_{aux} & \equiv \mbox{injected power wall plug efficiency} \\ \mathbf{Q} & \equiv \mathbf{P}_{fus} \ / \ \mathbf{P}_{aux} = \mbox{fusion power} \ / \ auxiliary \ power \end{array}$

For more details see J. Menard, et al., Nucl. Fusion 51 (2011) 103014

Fusion gain Q_{DT} \propto H^{2 \rightarrow 5} from low \rightarrow high gain

Fusion power density
$$\equiv \Gamma_{DT} = n_D n_T \langle \sigma v \rangle_{DT} E_{DT} \propto p^2$$

 $P_{fusion} \propto (P \tau_E)^2 / V$
 $\tau_E \propto H I_P^{\alpha_I} B_T^{\alpha_B} n_e^{\alpha_n} P^{-\alpha_P} R^{\alpha_R} \kappa^{\alpha_\kappa} \epsilon^{\alpha_\kappa}$
 $P = P_{aux} (1 + \lambda_{DT} Q_{DT}) \quad Q_{DT} \equiv P_{fusion} / P_{aux} \quad \lambda_{DT} = 0.2$
 $Q_{DT}^* \equiv Q_{DT} / (1 + \lambda_{DT} Q_{DT})^{2(1-\alpha_P)}$
 $\propto H^2 I_P^{2\alpha_I} B_T^{2\alpha_B} n_e^{2\alpha_n} P_{aux}^{1-2\alpha_P} R^{2\alpha_R-3} \kappa^{2\alpha_\kappa-1} \epsilon^{2\alpha_\kappa-2}$
Fix current, field, density, geometry, auxiliary power, $\alpha_P = 0.7$
 $Q_{DT} \leq 1 \rightarrow Q_{DT} \approx Q^*_{DT} \propto H^2 \qquad Q_{DT} >>1 \rightarrow Q_{DT} \propto Q^*_{DT}^{2.5} \propto H^5$

OPPPL

Stability limits and other operating constraints

- n = 0 stability limit: elongation $\kappa \leq \kappa_{max}(I_i, \epsilon, \beta_P, wall)$
- *n* > 0 stability limits:
 - **Pressure:** $\beta_N \equiv \beta_T aB_{T0} / I_P [\%mT/MA] < \beta_{N-max}(\epsilon, \kappa, \delta, profiles)$
 - $\text{Current:} \quad q^* \equiv \pi a^2 B_{T0} (1 + \kappa^2) / \mu_0 R_0 I_P > 2$
- Density limit: $n_e < n_{Greenwald} = 10^{20} m^{-3} I_P [MA] / \pi a[m]^2$
- **Steady-state:** $I_{\text{Plasma}} = I_{\text{bootstrap (BS)}} + I_{\text{external current drive (CD)}}$
 - $-f_{\text{BS}} = C_{\text{BS}} \, \epsilon^{1/2} \, \beta_{\text{P}} \qquad \beta_{\text{P}} \, \beta_{\text{T}} \propto \beta_{\text{N}}^2 \, G(\kappa) \qquad G(\kappa) \propto \kappa \text{ or } (1+\kappa^2)/2 \quad \sim \kappa^2$
 - Fraction of external current drive = $f_{CD} = 1 f_{BS}$

Gain vs. physics and engineering constraints

• For steady-state, current limit is weaker constraint than high $f_{BS} \rightarrow no q^*$ dependence \rightarrow relevant variables are β_N / f_{BS} and f_{qw} :

Exponent	98y2	Petty-08	
C _β	2.68	2.14	
C _B	2.98	2.74	
C _{gw}	0.82	0.64	K
C _P	-0.38	0.06	
C _R	1.98	2.04	
С _к	5.92	5.04	
Cε	1.54	1.61	

 $Q_{DT}^* \propto H^2 (\beta_N / f_{BS})^{c_\beta} B_T^{c_B} f_{gw}^{c_gw} P_{aux}^{c_P} R^{c_R} \kappa^{c_\kappa} \epsilon^{c_\epsilon}$

Choose electrostatic gyro-Bohm Petty-08 with no β degradation (JET, DIII-D, NSTX)

C. Petty, et al., Phys. Plasmas 15 (2008) 080501

 $Q_{DT}^* \propto R^2 H^2 (1 - f_{CD})^{-2} f_{gw}^{0.7} B_T^3 \kappa^{3-5} \beta_N^2 \epsilon^{1.6}$

Optimize: confinement, current drive vs density

aspect ratio

Potential Innovation Areas for Compact Pilot

- Aspect Ratio Reduced A \rightarrow higher β_N and κ
- Magnet Technology HTS for higher B_T, J_{winding-pack}
- Confinement Optimize edge transport barrier
- Current Drive Negative NBI, new RF techniques
- Divertors Long-leg, liquid metals
- Blankets Liquid metal, high efficiency

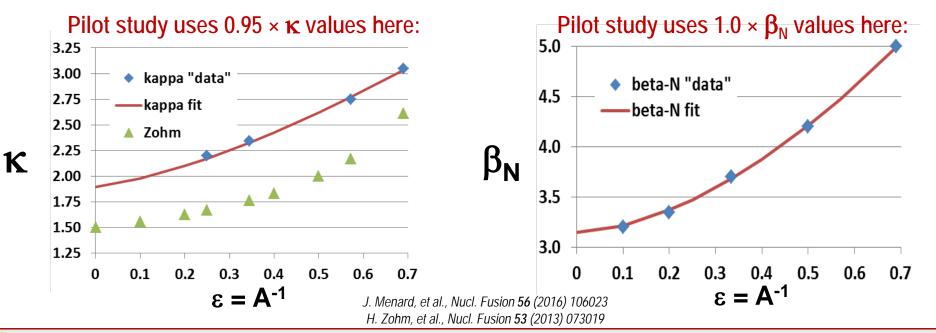
Potential Innovation Areas for Compact Pilot

- Aspect Ratio
- Magnet Technology
- Confinement
- Current Drive
- Divertors

Optimize this combination first
 Assess R₀ = 3m → smallest size for Q_{eng} > 1, high fluence

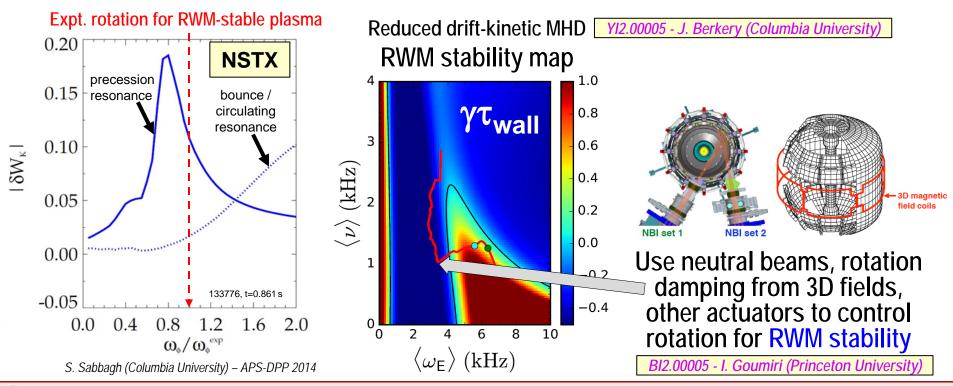
• Blankets

Optimization Approach


- Fix plasma major radius, heating power (P_{NNBI} =50MW) - $R_0 = 3m$ - smallest size for $Q_{eng} > 1$ + high fluence ~ 6MWy/m²
- Vary aspect ratio from A = 1.6 to 4
- Include blanket/shield model to achieve TBR~1 for all A
- Apply magnet (see backup) and plasma constraints
 - HTS strain: 0.3%, $\beta_N(\epsilon)$ n=1 no-wall, $\kappa(\epsilon)$: 0.95×limit, $f_{GW} = 0.8$
 - Vary HTS current density, peak field
 - Also scan inboard shielding thickness
- Compute Q_{DT} , Q_{eng} , and required H_{98} (unconstrained)

Aspect ratio dependence of limits: $\kappa(\epsilon)$, $\beta_N(\epsilon)$

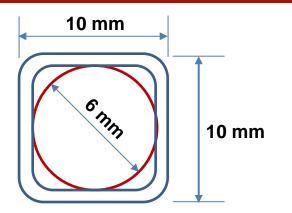
 NSTX data (+ST-FNSF models) at low-A, DIII-D, ARIES-AT for high A


- κ → 1.9 for A → ∞

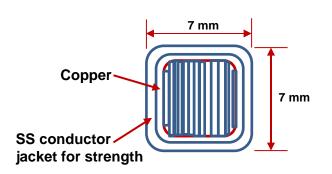
 Profile-optimized no-wall stability limit at f_{BS} ≈ 50% (Menard PoP 2004)
 - β_N → 3.1 for A → ∞

Rotation profile control may provide stable operation near and above n=1 no-wall limit

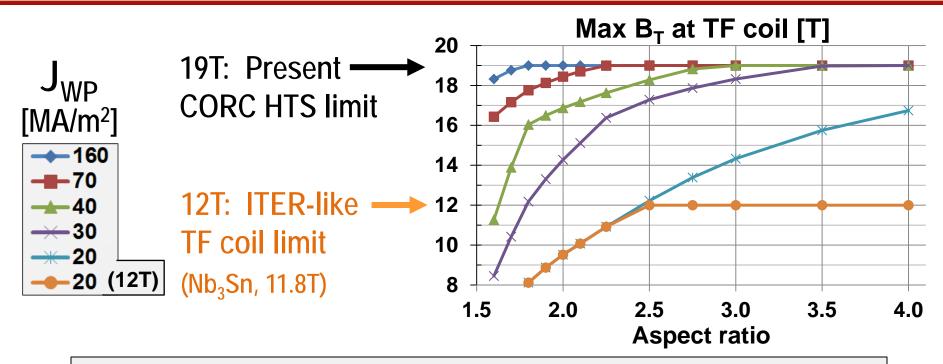
• NSTX, DIII-D show resonant damping can stabilize resistive wall mode (RWM)



Impact of physics and technology innovations on compact tokamak fusion pilot plants – APS-DPP 2016 (Menard)


HTS cables using REBCO tapes achieving high winding pack current density at high B_T

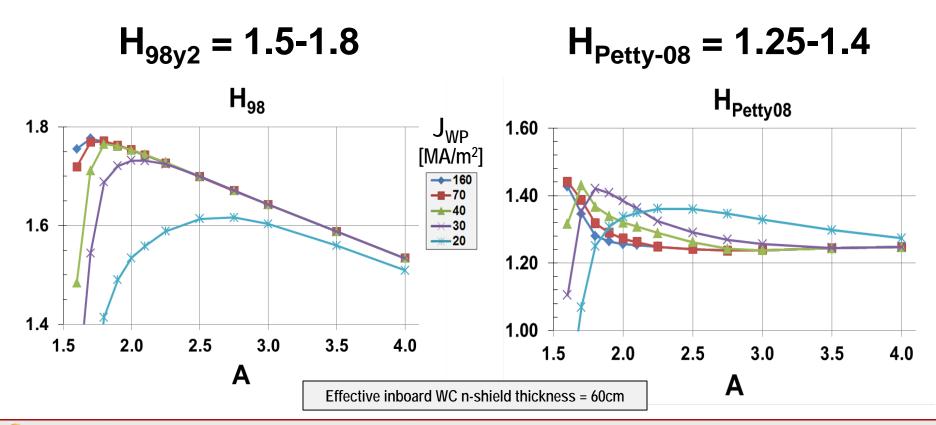
Conductor on Round Core Cables (CORC) J_{WP} ~ 70MA/m² at 19T


7 kA CORC (4.2K, 19 T) cable

Base cable: 50 tapes YBCO Tapes with 38 µm substrate (Van Der Laan, HTS4Fusion, 2015)

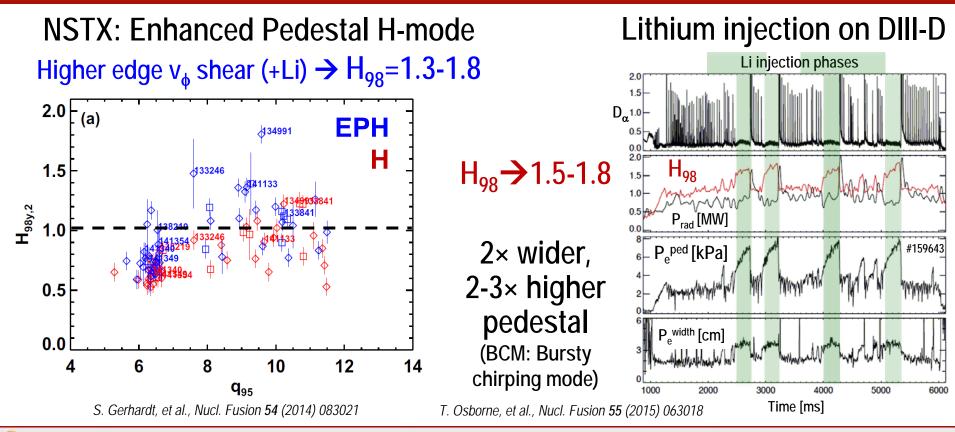
Higher J_{cable} HTS Base Conductor cable concepts He Gas Cooled under development: 8kA, J_{WP} ~ 160MA/m²

At lower A, high TF winding-pack current density enables access to maximum allowed B_T at coil


- Coil structure sized to maintain ≤ 0.3% strain on winding pack
- Effective inboard tungsten carbide (WC) neutron shield thickness = 60cm

OPPPL

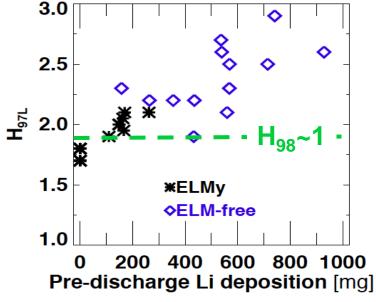
High current density HTS cable motivates consideration of lower-A tokamak pilot plants


 ITER-like TF constraints: J_{WP} P_{net} [MWe] $-J_{WP}=20MA/m^2$, $B_{max} \le 12T$ $[MA/m^2]$ 150 $-P_{\text{fusion}} \le 130$ MW, $P_{\text{net}} < -90$ MW -----70 100 • $J_{WP} \sim 30 MA/m^2$, $B_{max} \leq 19 T$ ~30 50 20 $-P_{fusion} \sim 400 MW$ 20 (12T) 0 -Small P_{net} at A=2.2-3.5 -50 • $J_{WP} \ge 70 MA/m^2, B_{max} \le 19T$ -P_{fusion} ~500-600MW -100 $-P_{net} = 80-100MW$ at A=1.9-2.3 -150 1.5 2.0 2.5 3.0 3.5 4.0 A ~ 2 attractive at high J_{WP} **Aspect Ratio A**

R=3m Pilot Plants require elevated H values

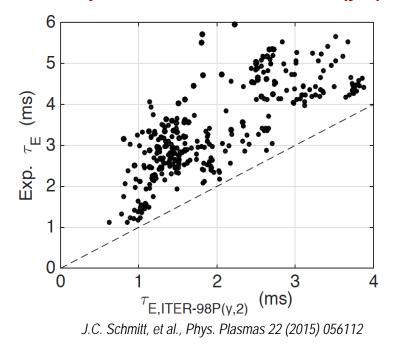
Impact of physics and technology innovations on compact tokamak fusion pilot plants – APS-DPP 2016 (Menard)

Increased edge rotation shear, wider and higher pedestal can increase normalized confinement ~1.5×



OPPPL

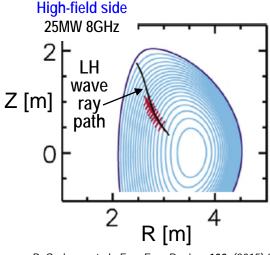
Impact of physics and technology innovations on compact tokamak fusion pilot plants – APS-DPP 2016 (Menard)


Li (solid and liquid) PFCs can increase confinement

NSTX (wider \rightarrow higher pedestals) H_{98y2} increased from 0.8 \rightarrow 1.4

D.P. Boyle, et al., J. Nucl. Mater. 438 (2013) S979

LTX (flatter → higher T profiles) 2-4x improvement over ITER98P(y,2)


OPPPL

Impact of physics and technology innovations on compact tokamak fusion pilot plants – APS-DPP 2016 (Menard)

High-efficiency current drive options exist but need additional R&D and demonstration (1)

Current drive (CD) efficiency target for Pilot Plant: $\eta_{CD} \equiv n_e I_{CD} R / P$ At least 2×10¹⁹ A/W/m² Prefer > 3×10¹⁹ A/W/m² to keep f_{BS} ≤ ~80%

ARC (MIT) **Inboard Launch Lower Hybrid** $\eta_{CD} \sim 3.6 \times 10^{19} \text{ A/W/m}^2$ HFS LHCD needs expt test

Helicon

wave ray

naths

FNSF-AT (GA)

Helicon Wave

 $\eta_{CD} \sim 2.1 \times 10^{19} \text{ A/W/m}^2$

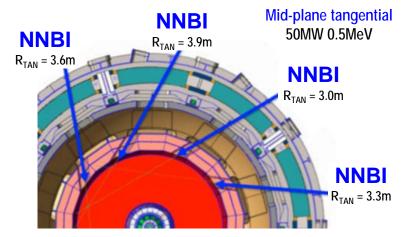
Helicon tests: DIII-D, KSTAR

Low-field side 40-80MW 1.2GHz

B. Sorbom, et al., Fus. Eng. Design, 100, (2015) 378

R. Prater, et al., Nucl. Fusion 54 (2014) 083024

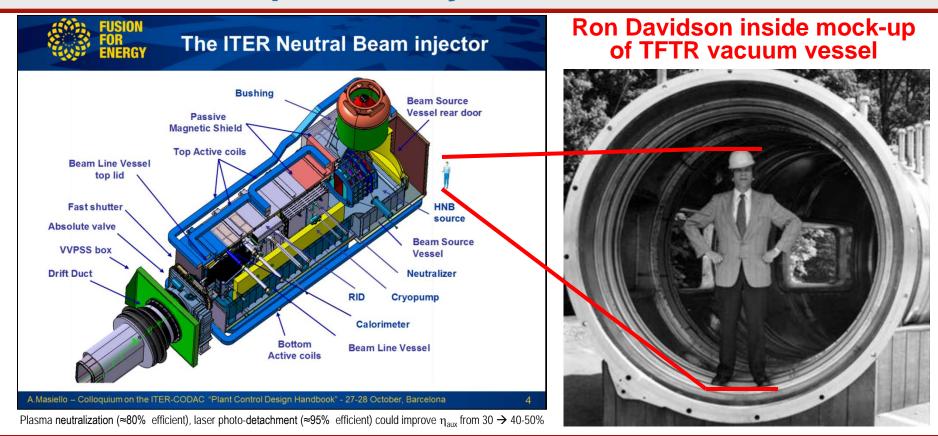
High-efficiency current drive options exist but need additional R&D and demonstration (2)


HTS ST-FNSF/Pilot

 $\label{eq:constraint} \begin{array}{l} \text{Electron Bernstein Wave (EBW)} \\ \eta_{CD} \sim 3 \times 10^{19} \ \text{A/W/m}^2 \\ \text{Ongoing / future tests: } \ \text{QUEST / NSTX-U, MAST-U} \end{array}$

Poloidal View 142301E77 121123N2 1.5 Plasma $= 40^{\circ}$ NSTX-U simulations at 100% NI Broad 28GHz scaled to R=3m, - 100% NI Narroy T_=13keV, 110GHz Antenna EBW-Driven $= 10^{\circ}$ Current Z(m) 0 Density (MA/m²/MW) $\theta = 70$ -1.5 1.5 R(m)r/a

G. Taylor, et al., EPJ Web of Conferences 87, 02013 (2015)


Negative Neutral Beam Injection (NNBI) $\eta_{CD} \sim 3.5 \times 10^{19} \text{ A/W/m}^2$ Test on JT-60SA, leverage ITER NNBI

L. El-Guebaly, et al., Energies, **9** (2016) 632

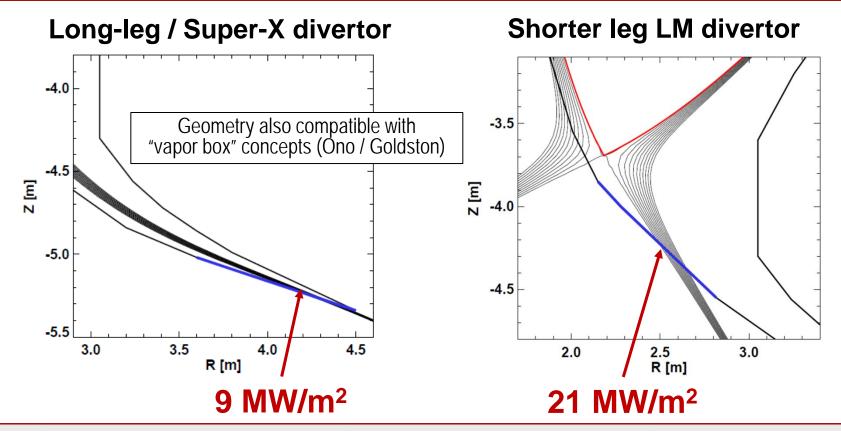
Impact of physics and technology innovations on compact tokamak fusion pilot plants – APS-DPP 2016 (Menard)

Despite ITER's beam ions being "too light", Ron was impressed by the scale of ITER NBI

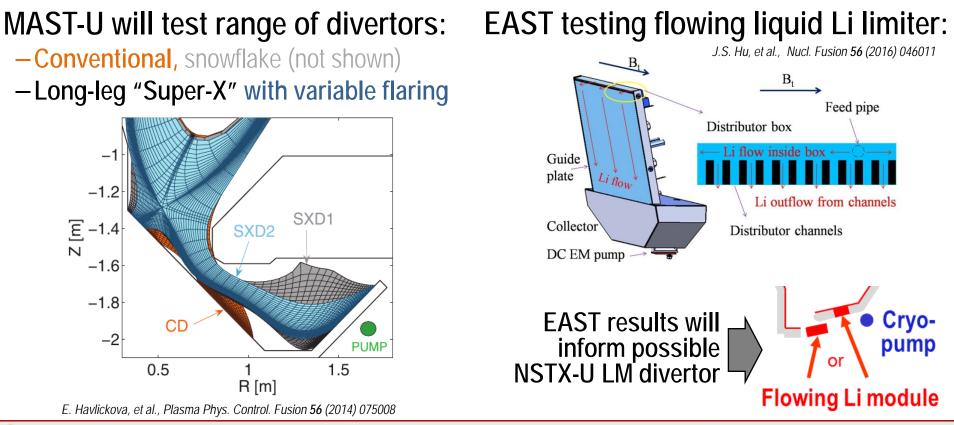


OPPPL

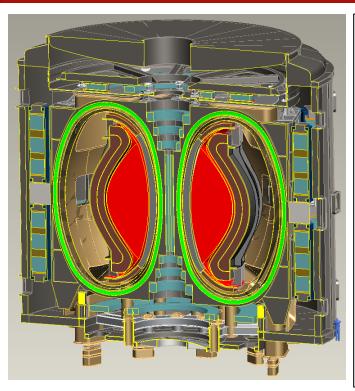
Potential Innovation Areas for Compact Pilot


- Aspect Ratio
- Magnet Technology
- Confinement
- Current Drive
- Divertors
- Blankets

Long-leg / Super-X aids heat flux reduction



OPPPL

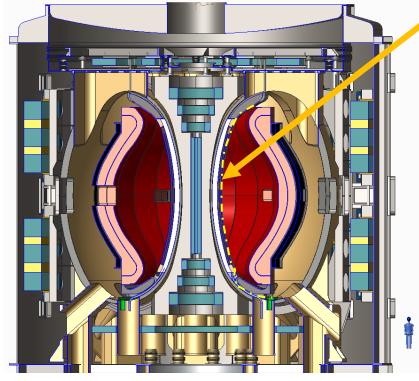

Another option: use fast-flowing Liquid Metal (LM) divertor for high heat-flux mitigation

Advanced divertors under active development

Example: A=2, R₀ = 3m HTS-TF Pilot Plant

$$\begin{split} \textbf{B}_{T} &= \textbf{4T}, \textbf{I}_{P} = \textbf{12.5MA} \\ \kappa &= 2.5, \, \delta = \textbf{0.55} \\ \beta_{N} &= \textbf{4.2}, \, \beta_{T} = \textbf{9\%} \\ \textbf{H}_{98} &= \textbf{1.75}, \, \textbf{H}_{Petty-08} = \textbf{1.3} \\ \textbf{f}_{gw} &= \textbf{0.80}, \, \textbf{f}_{BS} = \textbf{0.76} \end{split}$$

Startup I_P (OH)~2MA $J_{WP} = 70MA/m^2$ $B_{T-max} = 17.5T$ No joints in TF Vertical maintenance

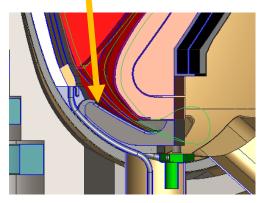

 $P_{\text{fusion}} = 520 \text{ MW}$ $P_{NBI} = 50 MW$ E_{NBI}=0.5MeV $Q_{DT} = 10.4$ $Q_{eng} = 1.35$ **P**_{net} = **73 MW** $\langle W_n \rangle = 1.3 \text{ MW/m}^2$ Peak n-flux = 2.4 MW/m^2 Peak n-fluence: 7MWy/m²

J. Menard, et al., Nucl. Fusion 56 (2016) 106023

Cryostat volume ~ 1/3 of ITER

O)PPPL

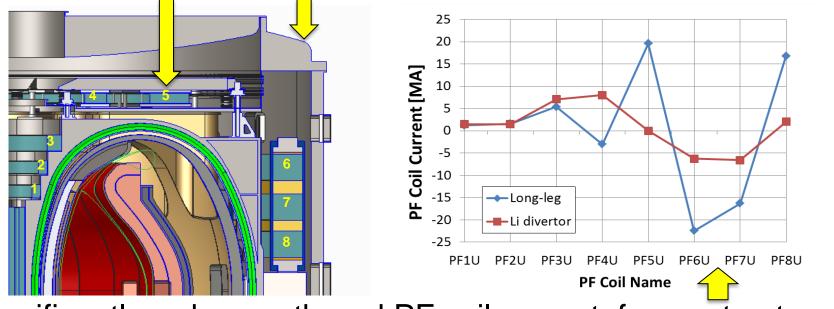
Low-A HTS design with Li flow on divertor and inboard surfaces



LM thickness = 5-10 mm, flow speed ~5-10 m/s

Double null liquid metal divertor system

Li flows from upper divertor down the inboard wall, exiting just after the lower inboard divertor.


Separate Li cooling of lower divertor

T. Brown, et al., submitted to Nuclear Fusion

Benefits of shorter-leg liquid metal divertor:

• No top PF coil or separate cryo-stat \rightarrow simplified maintenance

- Significantly reduce outboard PF coil current, force, structure
- If liquid lithium, wall pumping could help increase H-factor

OPPPL

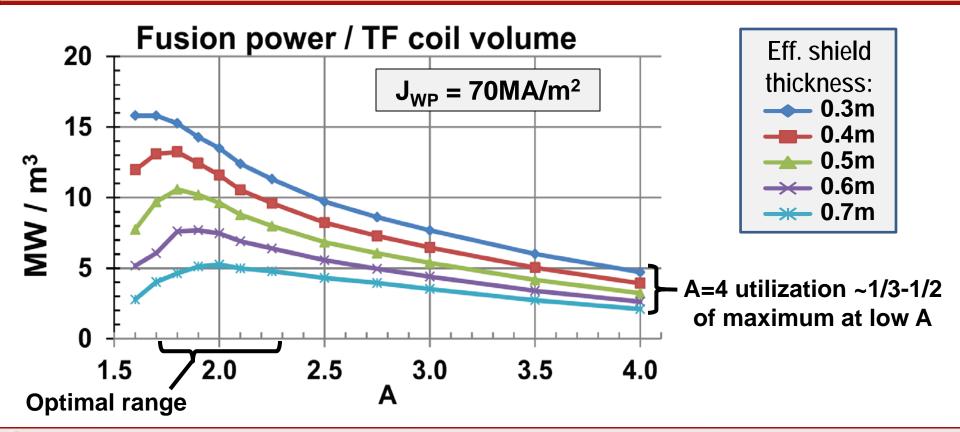
Liquid metal blankets offer potential for high thermal efficiency, modular design

HTS ST-FNSF/Pilot

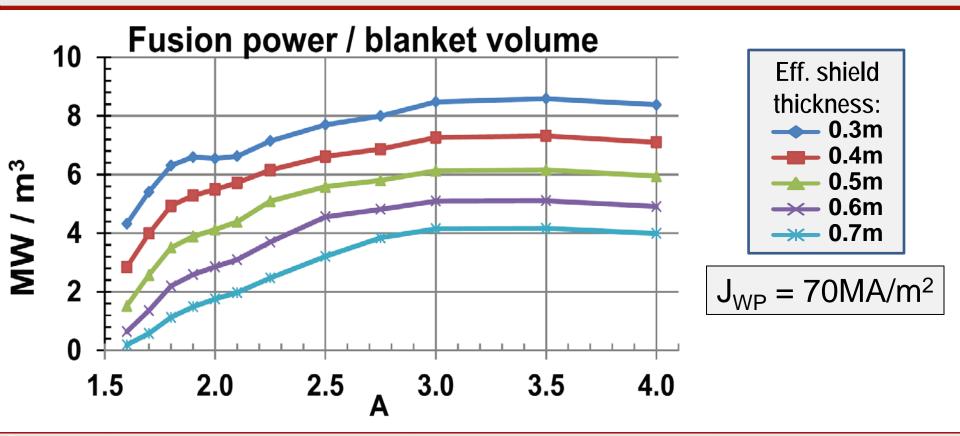
20 vertical sectors: $\eta_{th} = 30-45\%$ (55% SiC/SiC)

ARC (MIT) - Jointed TF FLiBe: 600-900°C FLiBe liquid immersion blanket, single component/removable: $\eta_{th} = 40-50\%$

OPPPL

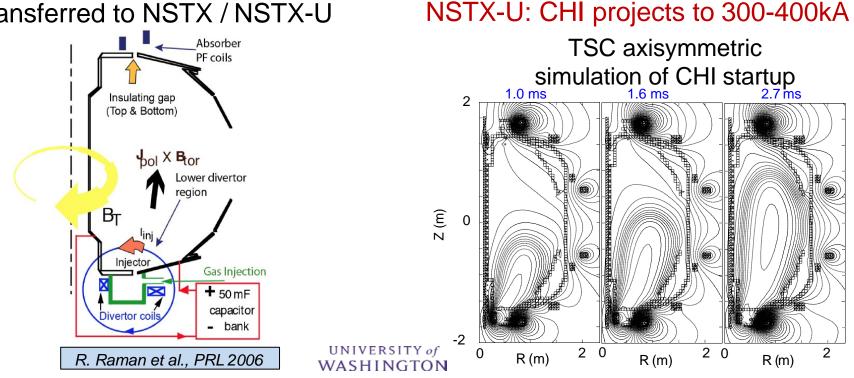

Impact of physics and technology innovations on compact tokamak fusion pilot plants – APS-DPP 2016 (Menard)

Summary: Compact fusion Pilot Plants possible with improved technology and physics operating regimes


- Rare Earth BCO (REBCO) HTS TF magnet development
- Lower A to improve stability informed by NSTX-U/MAST-U
- Pedestal confinement control via optimized velocity-shear, width - Li wall pumping to provide pedestal width control, flatter T profiles
- More efficient bulk current drive to facilitate steady-state
- Long-leg / Super-X for heat-flux mitigation for narrow SOL
- Liquid metals to exhaust heat, particles, eroded materials
 Simplify PF coil layout and vertical maintenance strategy
- High-temp, efficiency modular or pool liquid-metal blankets

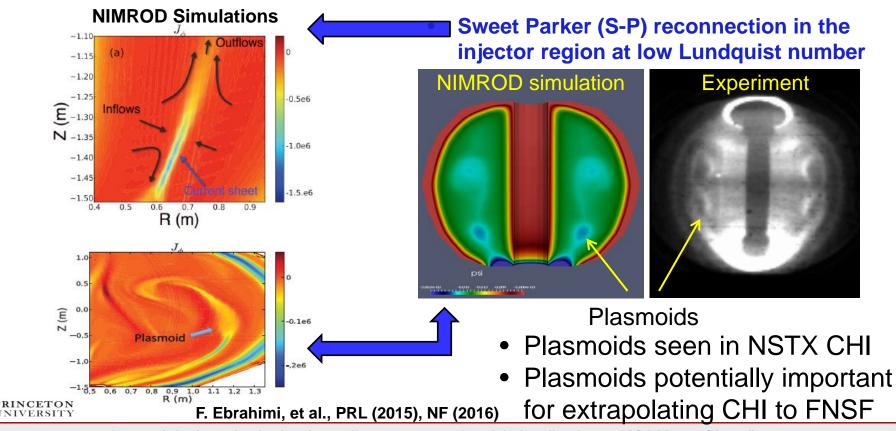
Backup slides

A = 1.8-2.3 maximizes TF magnet utilization, and TF will be significant fraction of core cost


A ≥ 3 maximizes blanket volume utilization

ST-FNSF may need solenoidless current start-up method Coaxial Helicity Injection (CHI) effective for current initiation

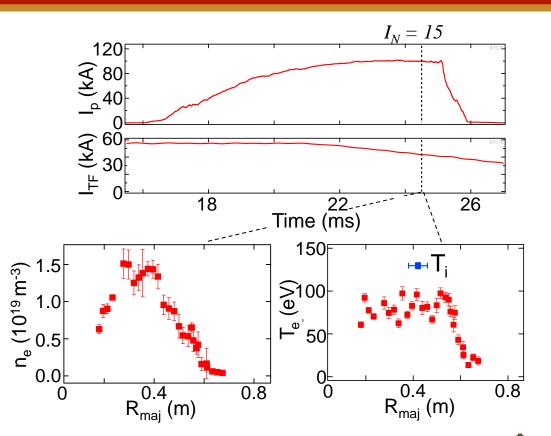
NSTX: 150-200kA closed flux current


CHI developed on HIT, HIT-II Transferred to NSTX / NSTX-U

OPPPL

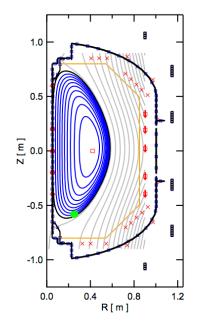
Impact of physics and technology innovations on compact tokamak fusion pilot plants – APS-DPP 2016 (Menard)

NIMROD simulations of CHI at high Lundquist number → plasmoid-mediated reconnection assists in flux closure

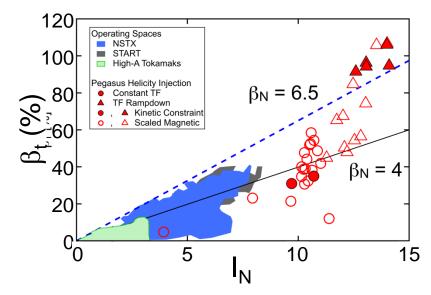


Impact of physics and technology innovations on compact tokamak fusion pilot plants – APS-DPP 2016 (Menard)

))PPPL


- HFS LHI development campaign provides unique operation space
 - Low $I_{TF} \sim 0.6 I_p$
 - $I_N = 5A \frac{I_p}{I_{TF}} > 10 \text{ accessible}$
- Enables high β_t access¹
 - Aided by anomalous ion heating
- Kinetic constraints on magnetic equilibrium fits²
 - $P_{tot}(0)$
 - Edge location defined by T_e profiles

 Sample magnetic reconstruction at t = 24.5 ms, using kinetic constraints



D.J. Schlossberg, APS-DPP 2016, 9/10

Equilibrium Parameters Shot 87332, 24.50 ms

	102 64	D	0.217 m
l _p	102 kA	\mathbf{R}_0	0.317 m
β_t	0.95	а	0.263 m
ℓ _i	0.22	Α	1.21
β _p	0.45	κ	2.6
W	545 J	δ	0.54
\mathbf{B}_{T0}	0.0249 T	q ₉₅	7.24

• β_T for sustained, low- ℓ_i , high- κ , LHI-driven plasmas

Engineering constraints

- Magnet constraints
 - Maximum stress in TF magnet structure = 0.66 GPa
 - HTS tape/cable strain limit 0.3% (equivalent to 0.4 GPa)
 - Winding pack current density (CORC 2015) 70 MA/m²
 - OH at small R \rightarrow higher solenoid flux swing for higher A
- Shielding / blankets
 - HTS fluence limit: 3.5-5 x 10²² n/m²
 - Shield:10x n-shielding factor per 15-16cm WC for HTS TF
 - Include inboard & outboard breeder thickness for TBR ~ 1
 - "Effective shield thickness" includes shield + DCLL blanket
- Electrical system efficiency assumptions:
 - 30% wall plug efficiency for H&CD typical of NNBI
 - $\ge 45\%$ thermal conversion efficiency typical of DCLL
 - Also include pumping, controls, other sub-systems see Pilot Plant NF 2011 paper

OPPPL

Simplified TF magnet design equations

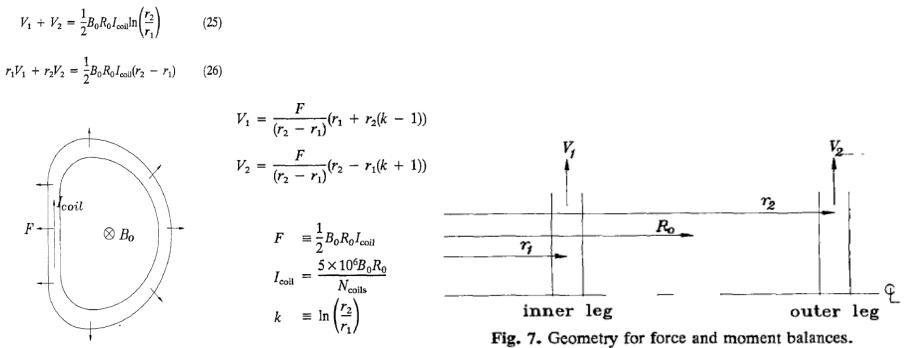


Fig. 5. Lorentz forces are normal to the conductor in the poloidal plane.

From J. Schwartz, Journal of Fusion Energy, Vol. 11, No. 1, 1992

OPPPL

HTS performance vs. field and fast neutron fluence

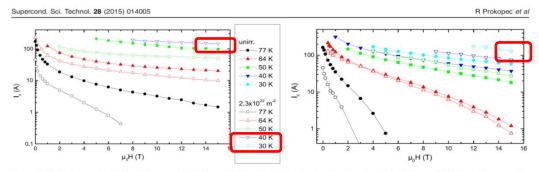


Figure 6. Critical currents (ASC-40) in magnetic fields applied parallel to the ab-plane (left) and parallel to the *c*-axis (right) before and after irradiation to a fast neutron fluence of $2.3 \cdot 10^{22}$ m⁻².

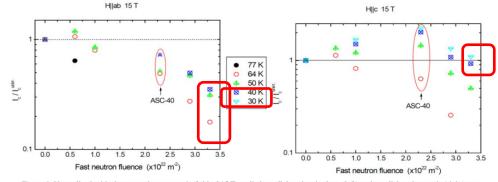
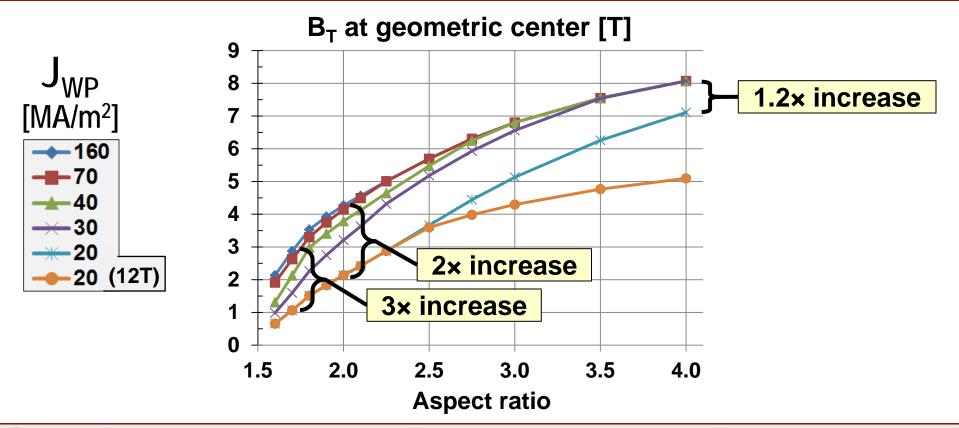
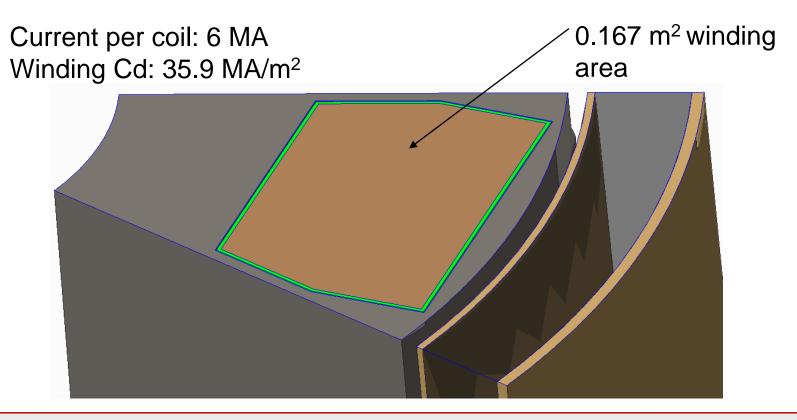
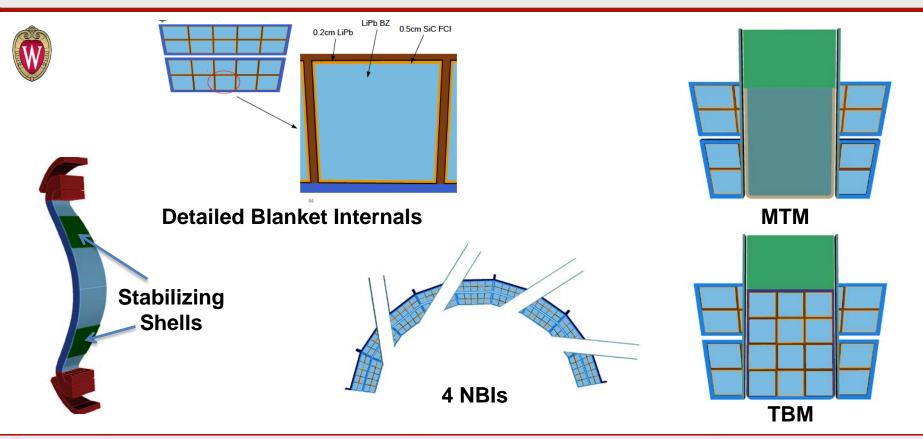



Figure 8. Normalized critical currents in a magnetic field of 15 T applied parallel to the ab-plane (left) and parallel to the c-axis (right) as a function of neutron fluence.

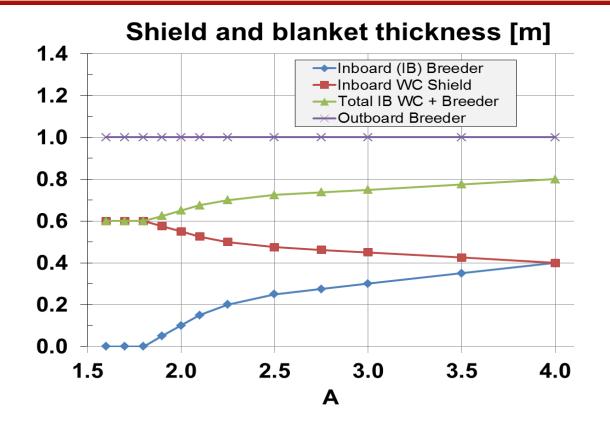
41

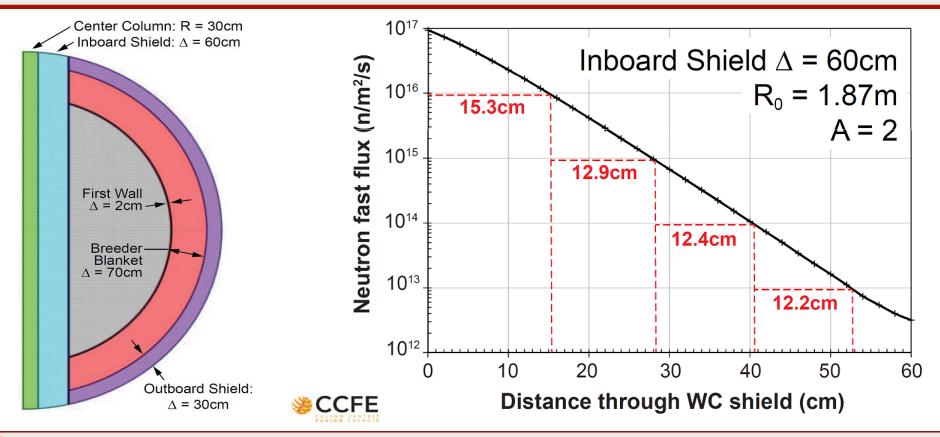

Increased TF winding-pack current density can increase B_T in plasma 2-3× at low A

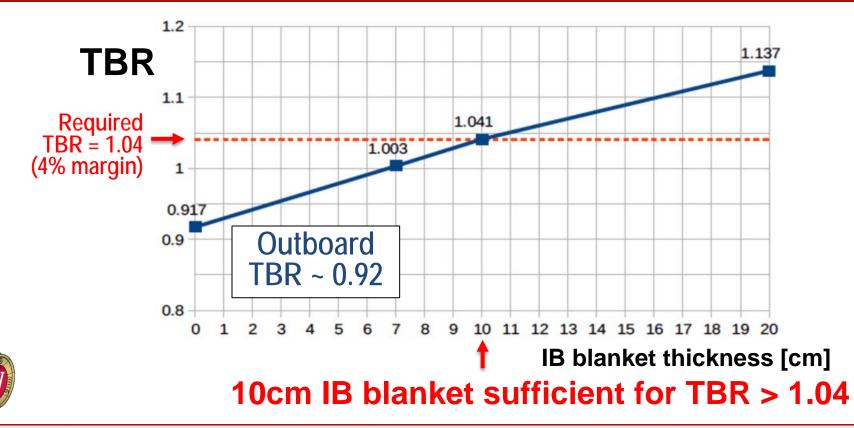
High current density HTS toroidal field coils could enable access to high fusion power in R~3m device


J_{WP} P_{fusion} [MW] ITER-like TF constraints: [MA/m²]700 $-J_{WP}=20MA/m^2$, $B_{max} \le 12T$ 600 ----70 $-P_{\text{fusion}} \leq 130$ MW 500 $\rightarrow 30$ -20 20 (12T) 400 • $J_{WP} \sim 30 MA/m^2$, $B_{max} \leq 19 T$ 300 $-P_{fusion} \sim 400 MW$ 200 100 • $J_{WP} \ge 70 MA/m^2, B_{max} \le 19 T$ -P_{fusion} ~500-600MW 1.5 2.0 2.5 3.5 4.0 3.0 Aspect Ratio A

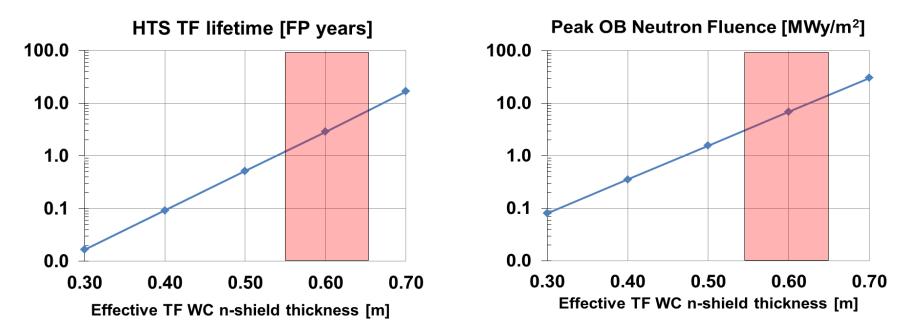
A=2, $R_0 = 3m$ device TF inboard leg




CAD Geometry of OB Blanket with Ports

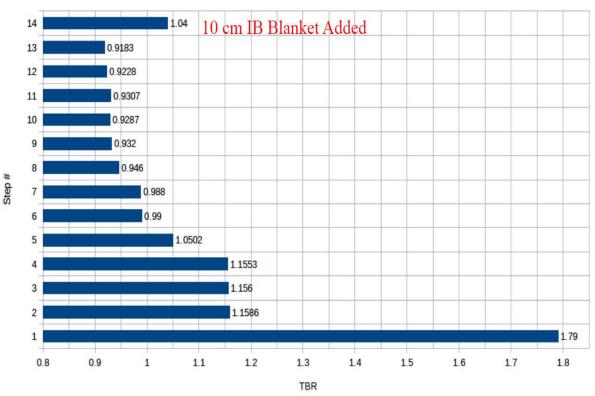

Model blanket and shield thickness vs. A

Neutronics analysis for HTS TF shielding



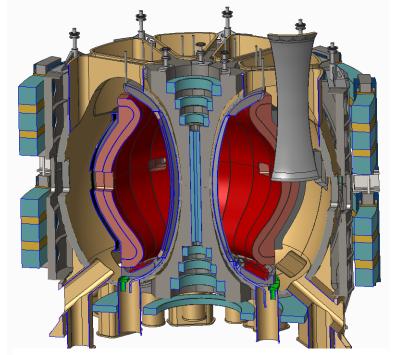
Need inboard breeding for TBR > 1 at A=2

DPPPL.

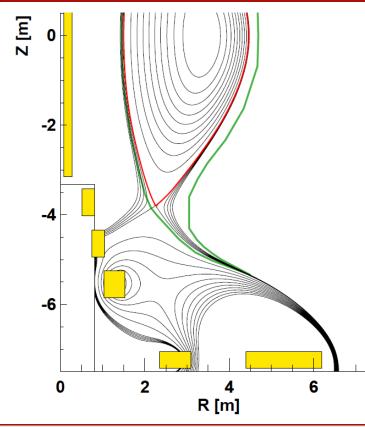

HTS TF lifetime is very strong function of inboard shielding thickness

Inboard shield + blanket equivalent to 60cm WC \rightarrow 3FPY \rightarrow 6-7MWy/m² \rightarrow fulfill FNSF requirement

Detailed breeding calculations completed for A=2


- Step 1- Infinite media of LiPb
- Step 2- LiPb confined to OB FW/blanket
- Step 3- Assembly gaps added
- Step 4- Homogeneous mixture of blanket in upper and lower ends of OB blanket
- Step 5- FW material added
- Step 6- Side, back, and front walls added
- Step 7- Cooling channels added
- Step 8- SiC FCI added
- Step 9- Stabilizing shells added
- Step 10- MTM only inserted (TBR relative to Step #9)
- Step 11- 4 TBMs only inserted (TBR relative to Step #9)
- Step 12- 4 NBIs only inserted (TBR relative to Step #9)
- Step 13- all MTM, 4 TBMs, and 4 NBIs inserted
- Step 14 include inboard breeding blanket

Outboard / inboard blanket vertical maintenance


Outboard blanket removed

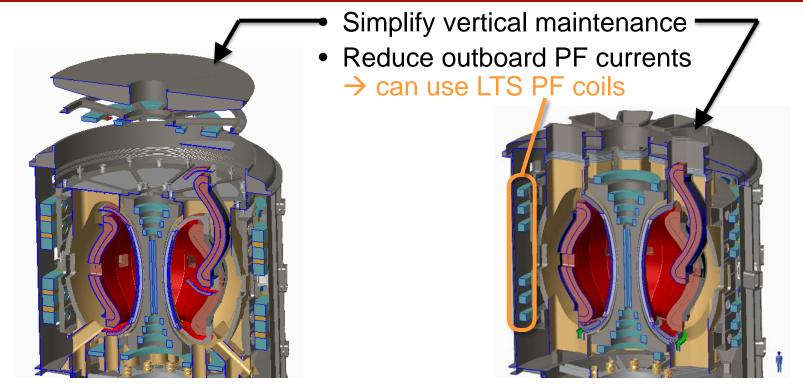
Inboard blanket removed after outboard blanket sectors removed

OPPPL

Long-leg / deep-V slot divertor

- PF coils outside TF
- Increase strike-point radius ~2× to reduce q_{||} and peak heat flux
- Divertor PFCs in region of reduced neutron flux
- Narrow divertor aperture for increased TBR
- More space for breeding at top and bottom of device

Pilot Plant study exploring liquid metal divertor design similar to flowing water curtain systems

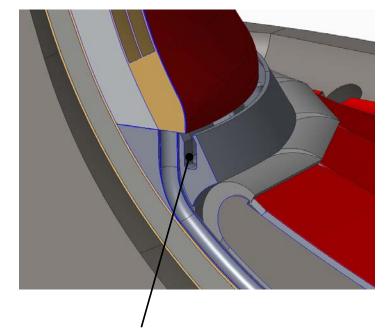

LM injector system can be assembled in a single or double unit

LM containment structure

Shield block

Ferritic steel backing plate

Comparison of long vs. shorter-leg divertor Pilots:

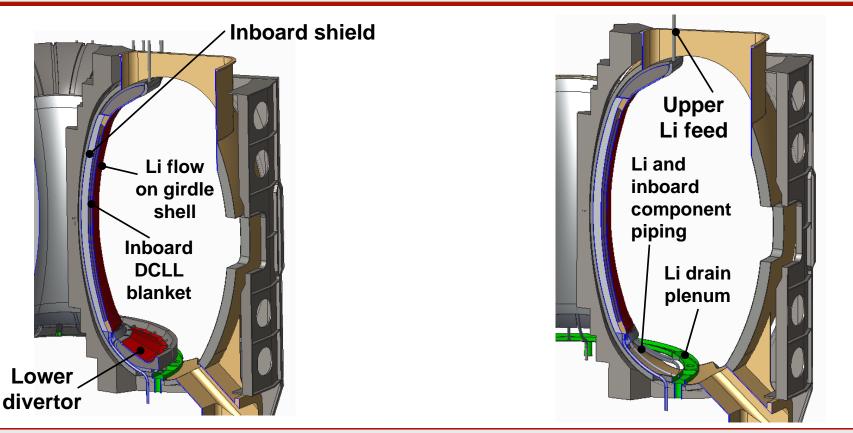


Long-leg/Super-X divertor

Liquid Metal divertor

OPPPL

Lower Li containment system



Base Li return trough

Li flows over inboard surface to a continuous trough that feeds ten Li drain lines.

One of ten 100 mm ID Li inboard drain lines

Local details of Li divertor / inboard FW

