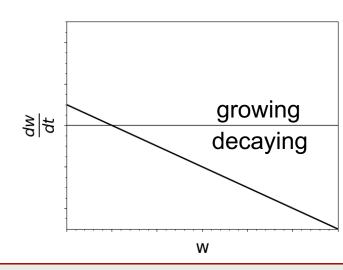


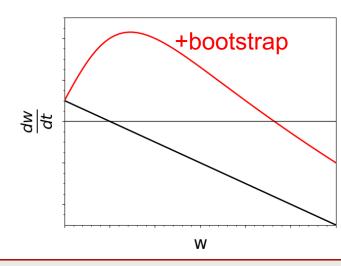
A first look at resistive MHD stability differences between NSTX and NSTX-U high- β discharges

Lucas Morton

R. J. La Haye, Z. R. Wang, J.-K. Park, D. P. Brennan, J. E. Menard, S. P. Gerhardt, J. W. Berkery, N. M. Ferraro, S. A. Sabbagh, L. F. Delgado-Aparicio, K. Tritz, R. E. Bell

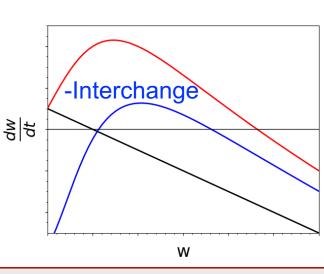

Tearing-type modes must be understood & tamed

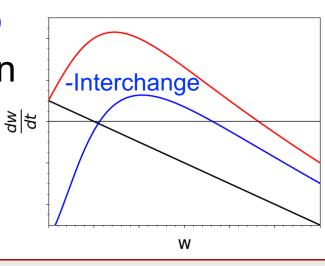
- Neoclassical tearing modes (NTM) unacceptable for reactor
 - Saturated modes → loss of confinement / disruptions
- Prediction: Large inverse aspect ratio $\epsilon = \frac{r}{R}$ stabilizing
 - Favors spherical tokamak approach
- NSTX Upgrade provides controlled experiment in ϵ
 - Compare to NSTX pre-upgrade


•
$$\frac{dw}{dt} = \frac{\eta^*}{k_0} \left[\Delta^*(w) r_S + \frac{w}{w^2 + w_d^2} D_{bS} - \sqrt{\frac{1}{w^2 + 0.2w_d^2} \frac{|D_R|}{\alpha_S - H}} \right]$$
 Hegna PoP 6 3980 (1992)

- Classical $\Delta^*(w)r_s$
 - -w is magnetic island full width

•
$$\frac{dw}{dt} = \frac{\eta^*}{k_0} \left[\Delta^*(w) r_S + \frac{w}{w^2 + w_d^2} D_{bS} - \sqrt{\frac{1}{w^2 + 0.2w_d^2}} \frac{|D_R|}{\alpha_S - H} \right]$$
 Hegna PoP 6 3980 (1992)

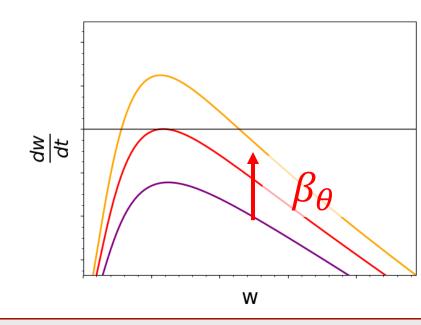

• Bootstrap: destabilizing $\propto \beta_{\theta}$


•
$$\frac{dw}{dt} = \frac{\eta^*}{k_0} \left[\Delta^*(w) r_S + \frac{w}{w^2 + w_d^2} D_{bS} - \sqrt{\frac{1}{w^2 + 0.2w_d^2}} \frac{|D_R|}{\alpha_S - H} \right]$$
 Hegna PoP 6 3980 (1992)

- Bootstrap: destabilizing $\propto \beta_{\theta}$
- Interchange: stabilizing $\propto \beta \propto \epsilon^{3/2} \beta_{\theta}$

•
$$\frac{dw}{dt} = \frac{\eta^*}{k_0} \left[\Delta^*(w) r_S + \frac{w}{w^2 + w_d^2} D_{bS} - \sqrt{\frac{1}{w^2 + 0.2w_d^2}} \frac{|D_R|}{\alpha_S - H} \right]$$
 Hegna PoP 6 3980 (1992)

- Bootstrap: destabilizing $\propto \beta_{\theta}$
- Interchange: stabilizing $\propto \beta \propto \epsilon^{3/2} \beta_{\theta}$
- Prediction: $\epsilon \uparrow$ increases stabilization
 - Favors spherical tokamak

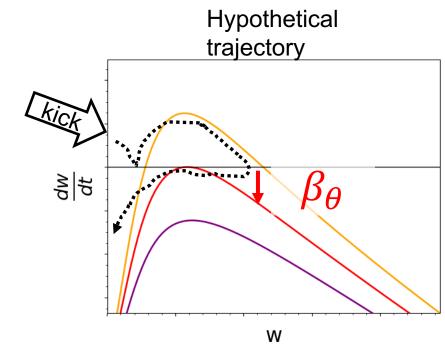


NTMs may be metastable depending on β_{θ}

•
$$\frac{dw}{dt} = \frac{\eta^*}{k_0} [\Delta^*(w) r_S + \beta_{\theta} f(w, \epsilon, q, \kappa, ...)]$$

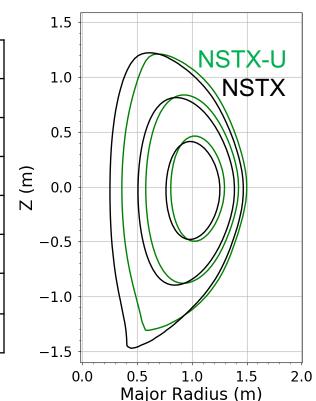
NTM often metastable

- Kick/seed required to onset
- Growth to saturation
- Decay as β_{θ} reduced
- Self-stabilization if $\beta_{\theta} < \beta_{\theta,marg}$

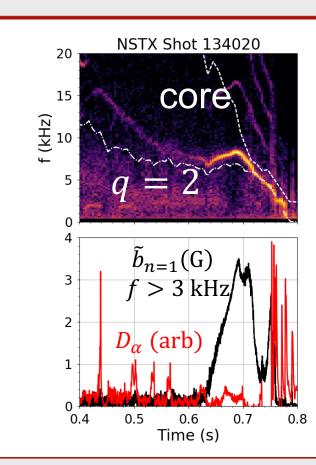


NTMs may be metastable depending on β_{θ}

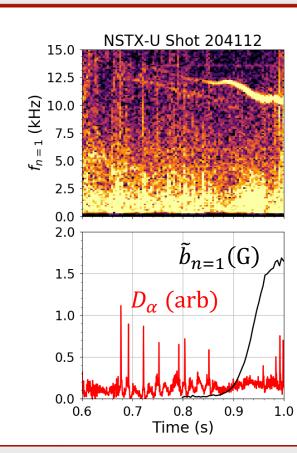
•
$$\frac{dw}{dt} = \frac{\eta^*}{k_0} [\Delta^*(w) r_S + \beta_{\theta} f(w, \epsilon, q, \kappa, ...)]$$


NTM often metastable

- Kick/seed required to onset
- Growth to saturation
- Decay as β_{θ} reduced
- Self-stabilization if $\beta_{\theta} < \beta_{\theta,mar,g}$

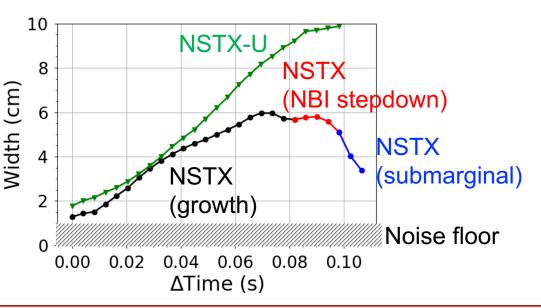

Comparable discharges obtained before & after upgrade

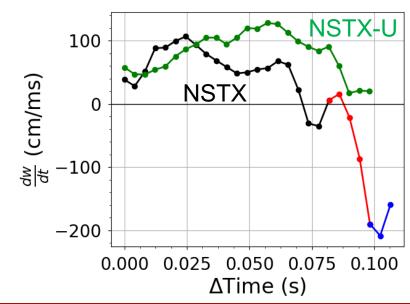
Quantity @ onset	NSTX (134020)	NSTX-U (204112)
r_s/R	0.35 -1	0.29
q_{95}	8.3	7.4
κ	2.2	2.2
eta_N	3.9	4.1
eta_N/l_i	6.0	5.7
I_p	880 kA	860 kA
B_T	0.44 T	0.63 T


NSTX 134020: Large m, n = 2,1 mode produced

- Resonant q from $f_{tor} + q$ -profile
- Mode width from T_i profile & \tilde{b}
 - Calibrate $w \propto \sqrt{\tilde{b}}$ from T_i flat-spot
- Growth, saturation & decay
 - -NBI, β reduced \rightarrow marginal point
- $D_{\alpha} \rightarrow \text{ELM}$ at onset
 - Possible trigger of mode

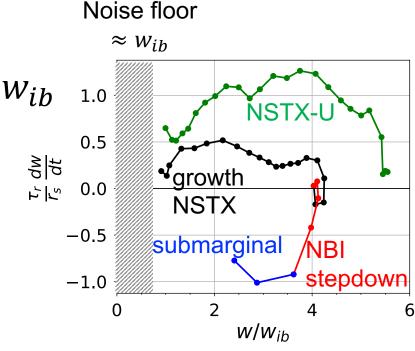
NSTX-U 204112 also has large m, n = 2,1 mode


- NBI:
 - No step-down before disruption
 - Using off-axis beam as well
- Diagnostics:
 - -MSE, CHERS unavailable
 - Use TS, SXR for mode identification
- Onset near ELM

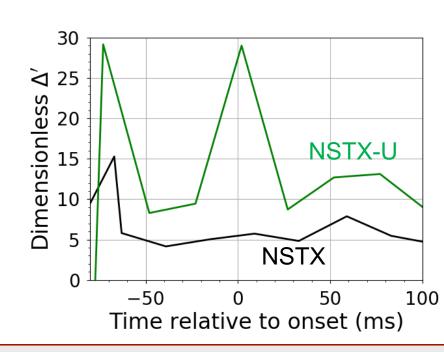


NSTX-U 204112 mode has larger growth rate, larger saturated island width

- Larger saturated width
 - Longer to saturate

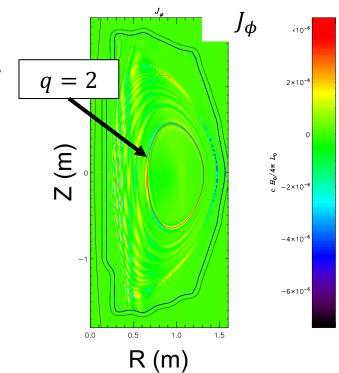

- Slightly larger growth rate
 - That lasts longer

NSTX-U 204112 has much larger normalized growth rate


- Due to longer τ_r
 - From higher T_e in NSTX-U
 - Necessary to get same β @ higher B
- Island onset observed at $w \approx w_{ib}$
 - Ion banana width $w_{ib} = \epsilon^{1/2} \rho_{\theta i}$
 - Consistent with NTM
 - Threshold width $\approx w_{ib}$
 - − Caveat: $w_{ib} \approx \text{noise floor}$
 - Low-amplitude precursors?

Newly-deployed Resistive DCON applied to NSTX & NSTX-U

Resistive DCON:

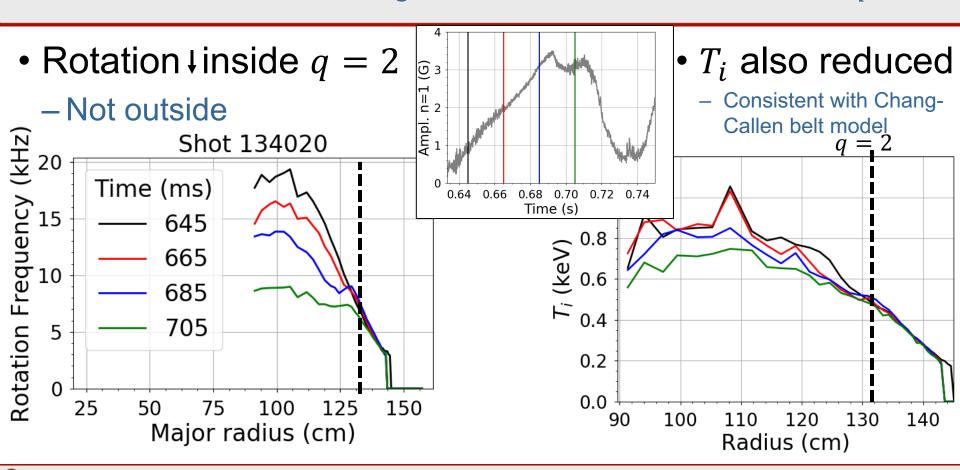

- Linear stability
- Toroidal, finite β
- Both shots have positive Δ'
 - Interchange needed to stabilize at small w
 - Onset not due to Δ' crossing >0

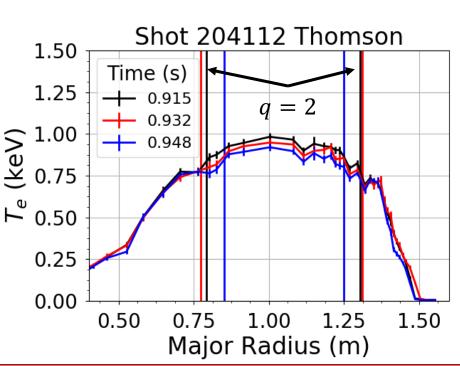
M3D-C1 shows edge instability in NSTX 134020

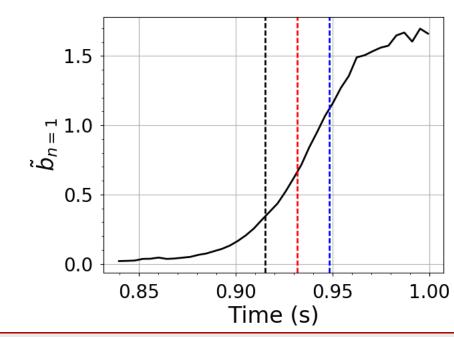
- Edge mode consistent with NTM 'seed'
- 134020, $t = 0.625 \,\mathrm{ms}$

- Couples to q=2
- Growth rate sensitive to edge resistivity

Conclusions & future directions


- NSTX-U example has larger growth rate, large saturated mode
 - Consistent with predictions from aspect ratio change
- RDCON finds classical tearing linearly unstable
 - In both NSTX & NSTX-U examples
- M3D-C1 indicates resistive edge instability @ onset
 - Consistent with NTM triggering
- Future directions:
 - Validation of stability predictions
 - Dedicated experiments to scan β , q_{min}
 - Off-axis neutral beam
 - Test control strategies


Reserve slides



NSTX 134020: Profile diagnostics indicate n = 1 mode at q = 2

NSTX-U 204112: T_e profile has flat spots at q=2

