

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Electron Scale Turbulence and Transport in an NSTX Hmode Plasma Using a Synthetic Diagnostic for High-k Scattering Measurements

J. Ruiz Ruiz¹

W. Guttenfelder², N. Howard¹, N. F. Loureiro¹, A. E. White¹, Y. Ren², S.M. Kaye², J. Candy⁷, B. P. LeBlanc², F. Poli², E. Mazzucato², K.C. Lee³, C.W. Domier⁴, D. R. Smith⁵, H. Yuh⁶
 1. MIT 2. PPPL 3. NFRI 4. UC Davis 5. U Wisconsin 6. Nova Photonics, Inc. 7. General Atomics

59th Annual Meeting of the APS Division of Plasma Physics October 23-27, 2017, Milwaukee, Wisconsin

Electron Scale Turbulence and Anomalous Electron Thermal Transport in STs

- NSTX H-mode plasmas that are driven by neutral beams exhibit ion thermal transport close to neoclassical (collisional) levels, due to *suppression of ion scale turbulence by ExB shear and strong plasma shaping* [*cf. Kaye NF 2007*].
- Electron thermal transport is always anomalous (>> neoclassical).
- <u>Goal</u>: Study electron thermal transport caused by electron-scale turbulence in NSTX and NSTX-U.

Use a High-k Scattering Diagnostic to Probe Electron Scale Turbulence in NSTX and NSTX-U

 $P_s \propto \left(\frac{\delta n}{n}\right)^2$

- Scattered power density
- Three wave-coupling between incident beam (k_i, ω_i) and plasma (k, ω) $\overrightarrow{k}_s = \overrightarrow{k} + \overrightarrow{k}_i$ $\omega_s = \omega + \omega_i$
- Gaussian microwave probe beam
 - a = 3 cm (1/e² radius, ~ 800 $\rho_{\rm e}$)
 - $f = 280 \text{ GHz} (>> f_{pe}, fce)$
- Turbulence k is selected by geometry
 - Past work by F. Poli on synthetic diagnostic: k-filter, GTS code
- This talk: synthetic diagnostic
 - Two methods: k-filter and real space filter, GYRO

High-k Scattering Diagnostic Provides the Frequency and Wavenumber Spectrum of Electron Scale Turbulence

• Different channels \rightarrow different k \rightarrow wavenumber spectrum of turbulence

High-k Scattering Diagnostic Provides the Frequency and Wavenumber Spectrum of Electron Scale Turbulence

• Different channels \rightarrow different k \rightarrow wavenumber spectrum of turbulence

Two Equivalent Ways to Perform a Synthetic Diagnostic for Turbulence Scattering Measurements

Two Equivalent Ways to Perform a Synthetic Diagnostic for Turbulence Scattering Measurements

GYRO Simulation Needs To Resolve $(k_R, k_Z)^{exp}$ For Synthetic Diagnostic: Hybrid Scale Simulation

- Experimental k + 1/e filter amplitude mapped to GYRO (k_r , k_{θ})-grid.
- Standard e- scale sim: is sufficient to capture transport levels
 - does not accurately resolve experimental k

Numerical Resolution Details of GK Simulations Needed for Synthetic Diagnostic of High-k Scattering

Experimental profiles used as input

Local simulations performed at scattering location (r/a~0.7, R~136 cm).

- Only electron scale turbulence included.
- 3 kinetic species, D, C, e (Z_{eff}~1.85-1.95)
- Electromagnetic: $A_{\parallel}+B_{\parallel}$, $\beta_{e} \sim 0.3$ %.
- Collisions (v_{ei} ~ 1 c_s/a).
- ExB shear (γ_{E} ~0.13-0.16 c_s/a) + parallel flow shear (γ_{p} ~ 1-1.2 c_s/a)
- Fixed boundary conditions with $\Delta^{b} \sim 2 \rho_{s}$ buffer widths (e- scale).

Resolution parameters

Full Box Hybrid Sim Goal

 $L_r \propto L_y = 50 \propto 21 \rho_s (L/a~0.2)$ n_r x n = 900/1024 x 140/220

Simulation cost ~ 1 M CPU h

Reduced box Hybrid simulation $L_r \ge L_y = 18 \ge 21 \rho_s (L/a \sim 0.15)$ $n_r \ge n = 512 \ge 140$

Simulation cost ~ 0.5 M CPU h

Hybrid-scale, NOT multiscale simulation (ions not fully resolved)

Numerical Resolution Details of GK Simulations Needed for Synthetic Diagnostic of High-k Scattering

Experimental profiles used as input

Local simulations performed at scattering location (r/a~0.7, R~136 cm).

- Only electron scale turbulence included.
- 3 kinetic species, D, C, e (Z_{eff}~1.85-1.95)
- Electromagnetic: $A_{\rm H}+B_{\rm H}$, $\beta_{\rm e}\sim 0.3$ %.

Spectral Peak and width are Recovered Applying Synthetic Diagnostic to Reduced Box Simulation

Doppler shift (~ 1 MHz) must be included to match spectral shape + width

 Quantitative comparison must use a Full Box, Hybrid sim. Correct experimental units determining the amplitude not included in Reduced Box Sim

Next Steps and Conclusions

Conclusions

- Two syn. diagnostic methods (*k-space + real space*) are proposed for quantitative comparison with experimental density fluctuations from high-k scattering
- Computationally intensive *hybrid-scale* GK simulations are needed to capture experimental k + full ETG spectrum for synthetic diagnostic

Next steps

- Run Full Box Hybrid Scale simulation
- Ion-scale route to synthetic diagnostic
- 3D synthetic diagnostic

Questions & Discussion

Experimental k are Close to the Spectral Peak of Fluctuations

Measured k is close to the peak of the electron heat flux Q_e

Experimental Wavenumbers Produce non-negligible transport

- t = 398 ms
 - Low density gradient case
 - Unstable ETG

- k^{exp} close to density and Q_e spectral peak.
- Q_e consistent with previous standard e- scale sim results(Q_e~0.4 MW)

Experimental Wavenumbers Produce non-negligible transport

Obtain a time series of turbulent density fluctuations $\delta \hat{n}_{e}^{syn}(t)$

New Proposed Implementation: filtering in real space

Scattering system is **spatially** localized (R, Z, φ)_{loc}

Obtain a time series of turbulent density fluctuations $\delta \hat{n}_{e}^{syn}(t)$

Discussion of r & k filtering methods

k-space mapping - Selection of k

- Traditional way to interpret filtered scattering spectra.
- Delicate to compute, take into account correct wavenumber amplitudes.
- Code-dependent.
- Need to adequately complete k-mapping \rightarrow painful, but useful!

$$(k_{\mathsf{R}}, k_{\mathsf{Z}}, k_{\varphi}) \rightarrow (k_{\mathsf{r}}, k_{\theta}, k_{\varphi})$$

New: Real space filtering

- Common principle to all codes.
- Easier to implement and understand (no k-mapping).
- Need to resolve fine-scale structures (e- scale eddies) → much more computationally intensive (x5) but negligible wrt. turbulence simulations.

Two equivalent ways of interpreting scattering process Useful to compute both methods to gain confidence in simulated synthetic spectra.

Shape of *k*-filter along Flux Surface

Implementation of the synthetic diagnostic

Goal: A quantitative comparison between experiment and simulation of electron scale turbulence (e.g. frequency and k-spectrum).

Synthetic Diagnostic applied to Cyclone Base Case (not experiment! yet ...)

Cyclone base case physical parameters:

- 2 kinetic species (DK e-)
- ES
- Periodic BC
- Flat profiles
- S-alpha, non-shifted geometry circular geometry
- Doppler shift M = 0.1

Numerical resolution parameters			
$\Delta k_x \rho_s = 0.049$	$\Delta k_y \rho_s = 0.049$		
$k_x \rho_s^{max} = 3.14$	$k_{y}\rho_{s}^{max} = 3.093$		
$L_{\rm x} / \rho_{\rm s} = 128$	$L_{y}/\rho_{s} = 128$		
dn = 8	Bm = 4.94		
$\Delta x/\rho_s = 0.5$	Lx/a = 0.28		
n _x = 256	n _n = 64		
Experimental beam width : $\Delta x = 5, 10, 20 \text{ cm}$			
$\Delta k_x \rho_s^{beam} =$	$\Delta k_y \rho_s^{beam} =$		

Real Space Filters – 2D

Goal: establish sensitivity of synthetic signal to beam width To what extent do we need a simulation domain that covers the full microwave beam?

INSTX-U

Cyclone Base Case: Wavenumber Space Filters – 2D

Measurement Wavenumbers $k_r \rho_s^{exp} = 0.27$ $k_\theta \rho_s^{exp} = 0.42$

Cyclone Base Case: Wavenumber Space Filters – 1D

Cyclone Base Case: Wavenumber measurement region

Synthetic signal: $a_0 = 5$ cm

Synthetic signal: $a_0 = 10$ cm

INSTX-U

Synthetic signal: $a_0 = 20$ cm

Conclusions from Cyclone Base Case Tests

- We have shown good agreement between two alternate ways to approach a scattering synthetic diagnostic
 - filtering in real space (r-filter)
 - filtering in wevenumber space (k-filter)
- The beam width was included in the full simulation domain at $a_0 = 5$ cm, and completely exceeded sim domain at $a_0 = 20$ cm.
- Agreement between r & k filters was best at $a_0 = 5 \& 10 \text{ cm}$.
- At a₀ = 20 cm, the r-filter was a factor 2-3 smaller amplitude than the k-filter method (possibly due to beam exceeding sim domain at a₀ = 20 cm)

Immediate Next Steps

- Apply synthetic diagnostic to realistic NSTX plasma conditions
 - Run expensive GYRO simulations that overlap with scattering beam (~ 2 M CPU h) coming in next week
 - · Compare frequency and k-spectrum with experiment
- Implement a 3D synthetic diagnostic for higher fidelity modeling

Ion-scale route to a synthetic diagnostic comparison

Synthetic Diagnostic for the High-k Scattering System

Preliminary Steps:

- High-k scattering diagnostic \rightarrow experimental density fluctuation spectra 1. $|\delta n_e|^2_{kR,kZ}(\omega)$
- 2. Ray tracing code:
 - Scattering location + resolution ΔZ_{loc})
 - Turbulence wavenumber + resolution • Δk_7^{exp}

 $(R_{loc}, Z_{loc}) + (\Delta R_{loc})$

 $(k_{R}^{exp}, k_{7}^{exp}) + (\Delta k_{R}^{exp},$

3. Run a nonlinear gyrokinetic simulation (used GYRO here) capturing scattering location + resolving the experimentally measured wavenumber.

Solve Ray tracing equations, Appleton-Hartree approximation (propagation of high freq. $E ||\nabla k|| \ll k^2$) plasma)

Cold plasma dispersion tensor + Appleton-Hartree dispersion relation ($D = \det(\Lambda) = 0$)

 $\mathbf{A} = \frac{\omega^2}{c^2} \begin{pmatrix} S - N^2 \cos^2 \theta & -iD & N^2 \sin \theta \cos \theta \\ iD & S - N^2 & 0 \\ N^2 \sin \theta \cos \theta & 0 & P - N^2 \sin^2 \theta \end{pmatrix} \qquad \qquad N^2 = 1 - \frac{X(1-X)}{1 - X - \frac{1}{2}Y^2 \sin^2 \theta \pm \left[(\frac{1}{2}Y^2 \sin^2 \theta)^2 + (1-X)^2 Y^2 \cos^2 \theta \right]^{1/2}}$

Solve the ray-tracing equations, $(D = \det(\Lambda) = 0)$

$$\frac{d\boldsymbol{r}}{d\tau} = \frac{\partial \mathcal{D}}{\partial \boldsymbol{k}}\Big|_{\mathcal{D}=0},$$

$$\frac{d\boldsymbol{k}}{d\tau} = -\frac{\partial \mathcal{D}}{\partial \boldsymbol{r}}\Big|_{\mathcal{D}=0}$$

Obtain:

- Scattering location + resolution
- $(\mathsf{R}_{\mathsf{loc}}, \mathsf{Z}_{\mathsf{loc}}) + (\Delta \mathsf{R}_{\mathsf{loc}}, \Delta \mathsf{Z}_{\mathsf{loc}})$ • Turbulence wavenumber + resolution $(k_R^{exp}, k_7^{exp}) + (\Delta k_R^{exp}, \Delta k_7^{exp})$

2. Ray Tracing

Solve Ray tracing equations, Appleton-Hartree approximation (propagation of high freq. EM

Obtain:

- Scattering location + resolution
- Turbulence wavenumber + resolution $(k_R^{exp}, k_Z^{exp}) + (\Delta k_R^{exp}, \Delta k_Z^{exp})$

 $(\mathsf{R}_{\mathsf{loc}}, \mathsf{Z}_{\mathsf{loc}}) + (\Delta \mathsf{R}_{\mathsf{loc}}, \Delta \mathsf{Z}_{\mathsf{loc}})$

3. The GYRO code Numerically solves the Gyrokinetic-Maxwell System

- The gyrokinetic-Maxwwell system cannot be solved analytically except in simple limits
 → needs to be solved numerically (GYRO)
- Inputs: experimental plasma parameters plasma shape, equilibrium geometry, profiles, ...

 $\delta n_{s}, \delta V_{s}, \delta E_{s}$

 $\delta \phi$, δA_{\parallel} , δB_{\parallel}

- Outputs: moments and fields
 - Moments of the distribution function h_s
 - Perturbed electromagnetic field components
- Turbulent fluxes (particle Γ_s, heat Q_s, ...) can be reconstructed from outputs, and compared with experimental values.

Numerical Resolution Details of Ion and Electron Scale Simulations Presented

Experimental profiles used as input

Local, flux tube simulations performed at scattering location (r/a~0.7, R~136 cm).

- Only electron scale turbulence included.
- Experimental T_e, n_e, T_i, rotation, etc.
- 3 kinetic species, D, C, e (Z_{eff}~1.85-1.95)
- Electromagnetic: $A_{\parallel}+B_{\parallel}$, $\beta_{e} \sim 0.3$ %.
- Collisions (v_{ei} ~ 1 c_s[']/a).
- ExB shear (γ_{E} ~0.13-0.16 c_s/a) + parallel flow shear (γ_{p} ~ 1-1.2 c_s/a)
- Fixed boundary conditions with $\Delta^{b} \sim 2 \rho_{s}$ buffer widths (e- scale).

<u>Big-box e- scale</u> resolution parameters (hybrid-scale) ~ 1 M CPU h

- $L_r \ge L_y = 50 \ge 21 \rho_s (L/a \sim 0.2)$.
- $n_r \ge n_r \ge 900/1024 \ge 140$.
- $k_{\theta} \rho_s^{FS}$ [min, max] = [0.3, 42]
- $k_r \rho_s$ [min, max] = [0.3, 28]
- $[n_{\parallel}, n_{\lambda}, n_{e}] = [14, 12, 12]$

Large domain electron scale runs are *hybrid-scale*, NOT multiscale:

- lons are barely correctly resolved $\Delta k_{\theta} \rho_s \sim 0.3$, L_r x L_y = 50 x 21 ρ_s .
- Simulation ran only for electron time scales $(\sim 20a/c_s)$, ions are not fully developed.

Numerical Resolution Details of the Scale Simulations Presented

Experimental profiles used as input

Local, flux-tube simulations performed at scattering location (r/a~0.7, R~136 cm).

- Only electron scale turbulence included.
- 3 kinetic species, D, C, e (Z_{eff}~1.85-1.95)
- Electromagnetic: $A_{\parallel}+B_{\parallel}$, $\beta_e \sim 0.3$ %.
- Collisions (v_{ei} ~ 1 c_s/a).
- ExB shear (γ_{E} ~0.13 c_s/a) + parallel flow shear (γ_{p} ~ 1 c_s/a)
- Fixed boundary conditions with $\Delta^b \sim 1.5 \rho_s$ buffer widths.

Standard e- scale resolution parameters

- $L_r \times L_y = 6 \times 4 \rho_s$.
- $n_r x n = 192 x 48$.
- $k_{\theta}\rho_{s}$ [min, max] = [1.5, 74]
- $k_r \rho_s$ [min, max] = [1, 50]
- $[n_{\parallel}, n_{\lambda}, n_{e}] = [14, 12, 12]$

<u>Big-box e- scale</u> resolution parameters

- $L_r \times L_y = 50 \times 21 \rho_s$.
- n_r x n = 900/1024 x 142.
- $k_{\theta}\rho_{s}[min, max] = [0.3, 42]$
- $k_r \rho_s$ [min, max] = [0.3, 28]
- $[n_{\parallel}, n_{\lambda}, n_{e}] = [10, 8, 8]$

Operating Space of New High-k Scattering Diagnostic

- A new high-k scattering system is being designed to detect streamers based on previous predictions: Old high-k system: high-k_r, intermediate k_θ New high-k system: high-k_θ, intermediate k_r → streamers
- **My goal**: project the operating space of the new high-k scattering diagnostic using the mapping I implemented.
- **Disclaimer**: k-mapping of new high-k scattering system is based on:
 - **1. Experimental turbulence wavenumbers from previous studies (***Barchfeld APS* 2015, UC-Davis/NSTX-U Review of Fluct. Diagnostics May 2016).

k_z = 7-40 cm⁻¹
k_R = 0 cm⁻¹
→ High-k_θ scattering diagnostic.
2. Current plasma conditions (B ~ 0.5 T, T_e ~ 0.4 keV).

Mapped Wavenumbers of New High-k to GYRO 2D Fluctuation Spectrum

- Black dots: old hk
- <u>White dots</u>: new hk Picked k's in predicted measurement range k_Z = 7, 18, 29, 40 cm⁻¹ k_R = 0 cm⁻¹
- <u>Blue star</u>: streamers

NSTX-U

Mapped Wavenumbers of New High-k to GYRO 2D Fluctuation Spectrum

- Black dots: old hk
- White dots: new hk
- Blue star: streamers
- Picked k's in predicted measurement range k_Z = 7, 18, 29, 40 cm⁻¹ k_R = 0 cm⁻¹
- Lowest-k channel closest to streamers k_Z=7 cm⁻¹
- Highest-k not captured in simulation
 k_z = 40 cm⁻¹
 - Streamers: finite k_R
 |k_R| ~ |k_Z|

New Proposed Implementation: real space filtering

Scattering system is **spatially** localized (R, Z, φ)_{loc}

Obtain a time series of turbulent density fluctuations $\delta \hat{n}_{e}^{syn}(t)$

Past Work on NSTX H-mode Plasma Showed Stabilization of e- scale Turbulence by Density Gradient

- NSTX NBI heated H-mode featured a controlled current ramp-down. Shot 141767.
- An increase in the equilibrium density gradient was correlated to a decrease in high-k density fluctuation amplitude (measured by a high-k scattering system). *cf.* Ruiz Ruiz PoP 2015.

Results of wavenumber mapping

GYRO

- 2.68

(shot 141767, ch1)		
Cylindrical geometry (R,Z, $oldsymbol{arphi}$)	Field aligned (r, θ, q	o)
Ray Tracing: k _R = - 18.57 cm ⁻¹ k _Z = 4.93 cm ⁻¹	New ma ➔ ➔	ipping: k _r ρ _s = - 2.68 k _θ ρ _s = 4.99
$\rho_{\rm s}^{\rm exp}$ = 0.7 cm	ρ _s ^{GYRO} =	• 0.2 cm

- Next step is to run a GYRO simulation that resolves the experimental ٠ wavenumbers and the high-k ETG spectrum.
- Old high-k system is sensitive to k that are closer to the spectral peak of ٠ fluctuations than previously thought \rightarrow more transport relevant!

Experiment

Resolving (k_R,k_Z)^{exp} + Complete electron Scale Spectrum Requires a Big-Simulation-Domain e- Scale Simulation

Big-box simulation spectra show well resolved (k_R,k_Z)^{exp} and electron scale spectrum.

1D synthetic turbulence: proof of principle of equivalence between k & r filtering

Mapped Wavenumbers of New High-k Diagnostic to GYRO k_{θ} Fluctuation Spectrum

- Spectrum is integrated in k_r.
- Lowest-k channel will be closest to peak of fluctuation spectrum (streamers)

 $k_{R}=0, k_{Z}=7 \text{ cm}^{-1}$

- Need to resolve very high-k ($k_{\theta}\rho_{s} \sim 50$) to capture highest-k channel.
- **Red band**: measurement range of old system.
- Gray bands: measurement range of new system.

Towards a Quantitative Comparison of Plasma Turbulent Frequency Spectrum

- Similar spectral shape: spectral peak, spectral width.
- **NOTE**: a quantitative comparison is not yet available: correct experimental units are not included in Synthetic diagnostic.

Resolving (k_R,k_Z)^{exp} + Complete ETG Spectrum Requires a Big-Simulation-Domain e- Scale Simulation

Resolution constrains:

- Resolve $(k_R, k_Z)^{exp} \rightarrow \Delta k_{\theta} \rho_s^{FS} \sim 0.3$.
- Resolve full ETG spectrum $\rightarrow (k_{\theta} \rho_s^{FS})^{max} \sim 43$.
- Radial overlap with scattering beam width \rightarrow $L_r{\sim}8$ cm (L_r{\sim}21~\rho_s)

Decolution noromotors

- Resolve e- scale turbulence eddies ${\rightarrow}\,\Delta r \sim 2\rho_{\rm e}.$

	Standard e- scale	Big-box e- scale
$L_r[\rho_s]$	6	21
$L_y[\rho_s]$	6	21
$\Delta r \left[\rho_{\mathrm{e}} \right]$	~ 2	2.5
n _r (radial grid)	~ 200	512
$\Delta k_{\theta} \rho_s$	1-1.5	0.3
$k_{\theta} \rho_s^{max}$	40-50	43
n (tor. modes)	~50	142

 $k_{\theta}\rho_{s}$ here means $k_{\theta}\rho_{s}^{FS}$

- Spectra show well resolved $(k_R, k_Z)^{exp}$ and ETG spectrum (*cf.* slide 22).
- Experimental wavenumbers produce non-negligible δn_e and Q_e consistent with previous escale simulation results (Q_e ~ 0.4 MW).

Numerical Resolution Comparison with Traditional Ion Scale, Electron Scale and Multiscale Simulation

Poloidal wavenumber resolution ($k_{\theta}\rho_{s}$ here means $k_{\theta}\rho_{s}^{FS}$)

	$\Delta k_{\theta} \rho_s$	$k_{\theta} \rho_s^{max}$	n #tor. modes
lon scale	~0.05	~1	~20-30
e- scale	~1-1.5	~50	~50
Multi-scale	~0.1	~40	~500
Hybrid e- scale	0.3	43	142

Radial resolution Δr - radial box size L_r

	Δr	L _r	n _r radial grid
lon scale	~ 0.5 ρ _s	~80-100 ρ _s	~ 200
e- scale	~ 2 ρ _e	~ 6-8 ρ _s	~ 200
Multi-scale	~ 3 ρ _e	~ 40-60 ρ _s	~ 1500
Hybrid e- scale	3.5 ρ _e	50 ρ _s	1000

Prerequisites to Coordinate Mapping

We want to perform:

- coordinate mapping GYRO (r,θ,φ)
- wavenumber mapping $(k_r \rho_s, k_\theta \rho_s)_{GYRO} \quad \bigstar \rightarrow (k_R, k_Z)$

Prerequisites

- Units: r[m], R[m], Z[m], $\theta, \phi \in [0,2\pi]$
- GYRO definition of k_{θ}^{loc} and k_{θ}^{FS}

$$k_{\theta}^{loc}(r,\theta) = -\frac{n}{r}\frac{\partial v}{\partial \theta}, \quad k_{\theta}^{FS} = \frac{nq}{r}$$

Consistent with GYRO definition of flux-surface averaged k_{θ}^{FS} =nq/r (*cf.* backup)

 $\leftarrow \rightarrow$ physical (R, Z, φ)

• Wavenumber mapping under simplifying assumptions

$$k_{R} = (k_{r}\rho_{s})_{GYRO} |\nabla r| / (\rho_{s})_{GYRO}$$
$$k_{Z} = (k_{\theta}\rho_{s})_{GYRO}^{loc} / (\kappa.\rho_{s})_{GYRO}$$

- Miller-like parametrization
- $\zeta=0$, $d\zeta/dr=0$ (squareness)
- $Z_0=0$, $dZ_0/dr=0$ (elevation)
- UD symmetric (up-down symmetry) \rightarrow (θ =0)

Calculated $(k_r, k_{\theta})^{exp}$ in GYRO Geometry

Given from experiment (ray tracing) $k_R = -1857 \text{ m}^{-1}, k_Z = 493 \text{ m}^{-1}$ (channel 1 of high-k diagnostic)

Get from GYRO (internally calculated)

- $(\rho_s)_{GYRO} \sim 0.002 \text{ m} (B_unit \sim 1.44)$
- |∇r| ~ 1.43, κ ~ 2

Apply mapping (simplified approx.)

$$\begin{cases} (k_r \rho_s)_{GYRO} = k_R * (\rho_s)_{GYRO} / |\nabla r| \\ (k_\theta \rho_s)_{GYRO}^{loc} = k_Z * \kappa * (\rho_s)_{GYRO} & \text{cf. slide 15} \end{cases}$$

Obtain experimental wavenumbers mapped to GYRO

$$(k_r \rho_s)_{GYRO} \sim -2.6$$

 $(k_\theta \rho_s)_{GYRO} \sim 2.0$

Wavenumber Mapping: $(k_R, k_Z) \rightarrow (k_r, k_\theta)$

• Mapping $(k_R, k_Z) \rightarrow (k_r, k_{\theta})$ is done using the GYRO definitions of k + transformation of coordinate systems.

Result is:

$$\begin{cases} k_{\rm r} - \frac{r}{q} \frac{\partial v}{\partial r} k_{\theta} = \frac{\partial R}{\partial r} k_{R} + \frac{\partial Z}{\partial r} k_{Z} \\ - \frac{r}{q} \frac{\partial v}{\partial \theta} k_{\theta} = \frac{\partial R}{\partial \theta} k_{R} + \frac{\partial Z}{\partial \theta} k_{Z} \end{cases}$$

- Need to compute $\partial R/\partial r$, $\partial R/\partial \theta$, $\partial Z/\partial r$, $\partial Z/\partial \theta$ @ (r_{loc} , θ_{loc})
- Given $(k_R, k_Z)^{exp}$ (ray-tracing), will obtain $(k_r, k_{\theta})^{exp}$ in GYRO coordinates!

	Previous studies	New k-mapping
k _r ρ _s ^{exp}	-4/-15	-1.5/-3
$k_{ heta} ho_{s}^{exp}$	3-6	3-5

Summary of Coordinate Mapping

The mapping in real-space: obtain (rlo_c, θ_{loc}) from (R_{loc}, Z_{loc})

$$\begin{cases} R(r_{loc}, \theta_{loc}) = R_{loc} \\ Z(r_{loc}, \theta_{loc}) = Z_{loc} \end{cases}$$

The mapping in k-space: obtain (k_r, k_{θ}) from $(k_R, k_Z)^{exp}$

$$\begin{cases} \mathbf{k}_{\mathrm{r}} - \frac{r}{q} \frac{\partial v}{\partial r} \mathbf{k}_{\theta} = \frac{\partial R}{\partial r} \mathbf{k}_{R} + \frac{\partial Z}{\partial r} \mathbf{k}_{Z} \\ - \frac{r}{q} \frac{\partial v}{\partial \theta} \mathbf{k}_{\theta} = \frac{\partial R}{\partial \theta} \mathbf{k}_{R} + \frac{\partial Z}{\partial \theta} \mathbf{k}_{Z} \end{cases}$$

New High-k Scattering System was Designed to Detect Streamers based on Previous Predictions

- Old high-k system: high- k_r , intermediate k_{θ}
- New high-k system: high-k_{θ}, intermediate k_r \rightarrow streamers
- y-axis scales are different, x-axis scales are similar

New High-k Scattering System was Designed to Detect Peak in Fluctuation Amplitude: streamers

- Old high-k system: high-k_r, intermediate k_θ
- New high-k system: high-k_{θ}, intermediate k_r \rightarrow streamers

Standard Electron Scale Simulation Captures Correctly Wavenumbers Detected by New High-k System

- k_{θ} values are restricted to [-5,5]
- k_r shown are full simulated spectrum.
- A big-box e- scale simulation is not needed to resolve spectrum of new high-k system.

A Big-Simulation-Domain Electron Scale Simulation Was Performed to Apply New Synthetic Diagnostic

- Outboard mid-plane δn_e(R, Z) in high resolution
 e- scale GYRO simulation of real NSTX plasma discharge.
- Shot 141767, time t = 398 ms (*cf.* Ruiz Ruiz PoP 2015).
- Scattering location and scattering volume extent are within GYRO simulation domain.
- Dots are scattering location for channels 1, 2, and 3 of high-k diagnostic.
- Dashed circles are 3cm and √2*3 cm microwave beam radii (for channel 1).

Input Parameters into Nonlinear Gyrokinetic Simulations Presented

	t=398	t = 565				
r/a	0.71	0.68	q	3.79	3.07	
a [m]	0.6012	0.596	S	1.8	2.346	
B _{unit} [T]	1.44	1.27	R _o /a	1.52	1.59	
n _e [10^19 m-3]	4.27	3.43	SHIFT =dR₀/dr	-0.3	-0.355	
T _e [keV]	0.39	0.401	КАРРА = к	2.11	1.979	
RHOSTAR	0.00328	0.003823	s _k =rdln(κ)/dr	0.15	0.19	
a/L _{ne}	1.005	4.06	DELTA = δ	0.25	168	
a/L _{Te}	3.36	4.51	s _δ =rd(δ)/dr	0.32	0.32	
β_e^{unit}	0.0027	0.003	Ň	0.2965	0.407	
a/L _{nD}	1.497	4.08	Υ _F	0.126	0.1646	
a/L _{Ti}	2.96	3.09	Ϋ́́	1.036	1.1558	
T _i /T _e	1.13	1.39	λ _D /a	0.000037	0.0000426	
n _D /n _e	0.785030	0.80371	c₅_/a (10⁵ s-1)	4.4	2.35	
n _c /n _e	0.035828	0.032715	Qe (gB)	3.82	0.0436	
a/L _{nC}	-0.87	4.08	Qi (gB)	0.018	0.0003	
a/L _{TC}	2.96	3.09				
Z _{eff}	1.95	1.84				
nu (a/c)	1.38	1.03				

Mapping $(k_r \rho_s, k_\theta \rho_s)_{GYRO} \rightarrow (k_R, k_Z)^{exp}$

We want to perform:

- coordinate mapping GYRO (r, θ, φ) $\leftarrow \rightarrow$ physical (R, Z, φ)
- wavenumber mapping $(k_r \rho_s, k_\theta \rho_s)_{GYRO} \quad \bigstar \rightarrow (k_R, k_Z)$

Preamble 1

- Units: r[m], R[m], Z[m] $\theta, \phi \in [0,2\pi]$
- GYRO definition of k_{θ}^{loc} and k_{θ}^{FS}

$$ik_{\theta}^{loc}(r,\theta) = \frac{1}{r} \frac{\partial}{\partial \theta} \Rightarrow k_{\theta}^{loc}(r,\theta) = -\frac{n}{r} \frac{\partial v}{\partial \theta}$$
 (To be shown in slide 17)

Consistent with GYRO definition of flux-surface averaged $k_{\theta}^{FS}=nq/r$ (*cf.* out.gyro.run)

$$k_{\theta}^{FS} = \frac{1}{2\pi} \int_{0}^{2\pi} k_{\theta}^{loc} d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} -\frac{n}{r} \frac{\partial v}{\partial \theta} d\theta = \left(-\frac{n}{r}\right) \frac{v(r, 2\pi) - v(r, 0)}{2\pi} = \frac{nq(r)}{r}$$

Mapping $(k_r \rho_s, k_\theta \rho_s)_{GYRO} \rightarrow (k_R, k_Z)^{exp}$

Preamble 2 why is
$$k_{\theta}^{loc}(r,\theta) = -\frac{n}{r} \frac{\partial v}{\partial \theta}$$
 ??

GYRO decomposition of fields

$$\delta\phi(r,\theta,\alpha) = \sum_{j=-Nn+1}^{Nn-1} \delta\hat{\phi}_n(r,\theta) e^{-in\alpha} e^{in\overline{\omega}_0 t} = \sum_{j=-Nn+1}^{Nn-1} \delta\phi_n(r,\theta), \quad \alpha = \varphi + \nu(r,\theta)$$

Set φ =0 and ω_0 = 0. Focus on transformation of one toroidal mode n. By definition of k_{θ}^{loc}

$$ik_{\theta}^{loc}\delta\phi_{n}(r,\theta) = \frac{1}{r}\frac{\partial}{\partial\theta}(\delta\phi_{n}(r,\theta)) = \frac{1}{r}\frac{\partial}{\partial\theta}(\delta\hat{\phi}_{n}(r,\theta)e^{-in\nu(r,\theta)}) = \frac{1}{r}\frac{\partial}{\partial\theta}(\delta\hat{\phi}_{n}(r,\theta)e^{-in\nu(r,\theta)}) = \frac{1}{r}\frac{\partial}{\partial\theta}e^{-in\nu} + \delta\hat{\phi}_{n}\left(-in\frac{\partial\nu}{\partial\theta}e^{-in\nu}\right) \Longrightarrow \delta\phi_{n}(r,\theta)\left(\frac{-in}{r}\frac{\partial\nu}{\partial\theta}\right)$$

Conclusion: we assume definition of k_{θ}^{loc} is **correct**. There is a one-to-one relation between n and k_{θ}^{loc} .

$$k_{\theta}^{loc}(r,\theta) = -\frac{n}{r} \frac{\partial v}{\partial \theta}$$

Mapping $(k_r \rho_s, k_\theta \rho_s)_{GYRO} \rightarrow (k_R, k_Z)^{exp}$

Preamble 3 Wavenumber mapping under simplifying assumptions

$$k_{R} = (k_{r}\rho_{s})_{GYRO} \left|\nabla r\right| / (\rho_{s})_{GYRO}$$

$$k_{Z} = (k_{\theta} \rho_{s})_{GYRO}^{loc} / (\kappa . \rho_{s})_{GYRO}$$

- Assumptions
 - $-\zeta = 0$, d ζ /dr=0 (squareness + radial derivative)
 - $Z_0=0$, dZ₀/dr=0 (elevation + radial derivative)
 - UD symmetric (up-down asymmetry of flux surface)
- In the following slides, develop mapping when assumptions are not satisfied, invert

 $(\mathsf{R}(\mathsf{r},\theta),\mathsf{Z}(\mathsf{r},\theta))=(\mathsf{R}_{\exp},\mathsf{Z}_{\exp}) \rightarrow (\mathsf{r}_{\exp},\theta_{\exp})$.

Instructions for editing bottom text banner

- Go to View, Slide Master, then select top-most slide
 - Edit the text box (meeting, title, author, date) at the bottom of the page

Slide title

- First level
 - Second level
 - Third level
 - You really shouldn't use this level the font is probably too small

Slide title

Column 1

Column 2

Here are the official NSTX-U icons / logos

NSTX Upgrade NSTX Upgrade NSTX-U NSTX-U National Spherical Torus eXperiment Upgrade **National Spherical Torus eXperiment Upgrade**