

Characterization of boronized graphite in NSTX-U and its effect on plasma performance

F. Bedoya, J.P. Allain, R. Kaita and C.H. Skinner

59th Annual APS DPP Meeting Milwaukee, WI Oct 23rd – Oct 27th 2017

Motivation – Oxygen retention

Samples made from NSTX-U tiles (post-mortem)

Core samples

Tiles location

- A18, Center Stack (CS) Shoulder
- B17, Inner Lower Divertor (ILD)
- C18, Outer Lower Divertor (OLD)

Experimental methods

MNSTX-U

Ion-Gas-Neutral Interactions with Surfaces (IGNIS) Facility

- True *in-situ, in-operando* analysis of surfaces.
- Chemistry analysis (HR-XPS, HR-ISS) at NAP (UHV to 1 mTorr OP).
- Wide experimental parameters space:
 - Temperature LN to 1000 °C.
 - Plasma irradiations; noble and reactive gas (250 eV – 2 keV)

Chemical identification of components via XPS

XPS OLD sample – Highest oxygen and boron concentration at OSP region

XPS ILD sample – Evidence of presence of impurities on surfaces in PFR region

XPS CS sample – Different chemistry in CS and LD

XPS CS sample - **D**⁺ Irradiation drives oxidation

Conclusions

- Samples manufactured from tiles extracted from NSTX-U were characterized post-mortem using XPS and ion beam etching
- The boron concentrations on the three samples were different, implying possible non-uniform deposition during boronization.
- D⁺ irradiation of clean *post-mortem* sample showed similar behavior to that observed in MAPP:
 - Deuterium ions driven oxidation
 - Plasma (Ar⁺) induced sputtering and oxides removal