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•  Each of the new sources can suppress Global Alfvén eigenmodes (GAE). 
•  Suppression occurs within milliseconds, e.g., it’s the ions. 

Early in NSTX-U operation it was seen that  
adding beam power could suppress GAE 
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New sources added to provide more power  
and current profile control 

•  Tangency radii of new beams 
outside magnetic axis for current 
profile control. 

•  Fast ions deposited with high pitch 
(V||/V), velocity nearly parallel to 
magnetic field. 

•  Suppression of GAE discovered on 
NSTX-U with injection of new 
neutral beams. 
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New sources added to provide more power  
and current profile control 

•  Tangency radii of new beams 
outside magnetic axis for current 
profile control. 

•  Fast ions deposited with high pitch 
(V||/V), velocity nearly parallel to 
magnetic field. 

•  Suppression of GAE discovered on 
NSTX-U with injection of new 
neutral beams. 
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Many examples where no Global Alfvén 
eigenmodes detected in plasmas heated by BL-2 
•  Transient events show clearest demonstration of suppression, 

–  reduction of ctr-GAE amplitude with turn-on of outboard source 
–  or, growth of ctr-GAE amplitude with turn-off of outboard source. 

•  More than 120 examples of BL2 source turning on or off during 
a plasma heated by BL1. 

•  In most cases, complete suppression is seen,  
–  however, particularly with the most inboard source, GAE may persist. 

•  Observations are qualitatively consistent with analytic model of 
cyclotron-resonance drive of GAE; k⊥ρ < 1.9 is stabilizing. 

•  Analytic interpretation supported by HYM-code simulations. 
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Suppression can occur in msec; fast ion 
distribution, not equilibrium changes 

•  Blue curve is total BL-1 
source power, red curve is 
BL-2. 

•  During BL-2 blips, GAE 
bursts are suppressed. 

•  Fast suppression in msecs, 
–  few BL-2 fast ions added. 

•  Typical fast-ion slowing down 
time is of order 25 ms 
–  full-energy BL-2 fast ions 

responsible for suppression? 
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Even if suppression isn’t complete, there is a 
strong reduction in mode amplitude  

•  Happens most commonly early in the 
plasma, probably when q is still high, 
density is low. 

•  Incomplete suppression is also more 
common the deepest of the new 
sources (closest to BL-1 sources). 

•  This is a fairly extreme example with 
only ≈15% of the total power coming 
from a BL-2 source. 
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•  Fractional drop in mode amplitude 
25ms after injection of a BL-2 
source, 
–  comparison of amplitude averaged over 

10 ms before, to 20-30 ms after injection. 

•  Database constructed from all 2016 
shots where BL-2 source injected 
during BL-1 heating phase. 

•  Counts in red all from 2-day XP 
focused on H-mode access, 
–  unique characteristic of these shots 

hasn’t been identified. 

Database constructed from all shots shows BL-2 
is very effective for suppressing GAE 
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•  GAE appear after BL-2 source turns off. 

•  Plasma is in L-mode, but suppression is 
also seen for H-mode plasmas. 

•  Modes evolve from dominantly n=-9 to 
dominantly n=-11. 

•  GAE suppressed again, late in discharge, 
when BL-2 comes back on. 

•  BL-2 provides roughly 25% of total power. 

An example with strong GAE activity before 
suppression is chosen for analysis 
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•  GAE bursting before modes are 
suppressed. 

•  Analysis done at two times: 
–  0.44s,during GAE activity (w/o 2c), 
–  0.47s, after 2c on. 

•  GAE suppression noticeable within 
milliseconds. 

•  BL-2 (source 2c) only adds ≈1.2MW 
out of 4.6MW, ≈26%. 

Analytic model and HYM simulations find unstable 
GAE before, stable after BL-2 turns off. 
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•  Amplitude of GAE expected to peak 
near minimum in q. 

•  Mode structure found by ‘inverting’ 
reflectometer data. 

•  Model displacement profile iterated 
until simulated reflectometer data 
matches raw data. 

•  Phase is nearly constant. 
•  Structure peaks near core, as 

expected for GAE. 

Reflectometer shows mode structure consistent 
expected global Alfvén eigenmode structure 
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•  Fast ions can be 
stabilizing/destabilizing 
depending: 

    Stable    : 
    Unstable: 
• Resonant outboard beams 

with pitch > 0.9 have small 
ρL, are stabilizing by this 
theory. 

 

Analytic model* qualitatively predicts low k⊥ρ  
(high pitch) fast ions will stabilize GAE  
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•  Experimental mode 
frequency used to estimate 
k|| from dispersion relation 

•  Experimental inputs are q, 
density and rotation profiles. 

Local analytic dispersion relation predicts GAE 
amplitude to peak near axis 
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•  Measured mode frequency, dispersion 
relation are used to estimate k|| from: 

•  The parallel beam ion velocity is 
estimated from the resonance condition: 

•  Two side-band fast ion resonances 
indicated by black lines in figures. 
–  lines show fast ions at constant parallel velocity. 
–  gaining/losing perpendicular energy moves fast 

ions along black resonance lines. 

TRANSP modeling predicts beam fast ions  
are resonant with GAE   
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ωGAE + k|| ± s / qR Vb|| =ωci,  s = 0,1

k⊥ρ>1.9k⊥ρ>1.9

a) 0.44s b) 0.47s

En
er

gy
 (k

eV
)

Pitch (V||/V)

NSTX-U 204707A02

0.0 1.00.5 0.0 1.00.5
50

100

Resonant Resonant

2 5 10

60

70

80

90

2 5 10



15 15th IAEA-TM on Energetic Particles, Princeton, New Jersey, Sept 5 – 8, 2017 

k⊥ρ>1.9k⊥ρ>1.9

a) 0.44s b) 0.47s
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•  k|| estimated above is used to calculate k⊥: 

–  The boundary between fast ions that drive vs 
damp the mode is: 

•  …where ρ is calculated from the 
perpendicular fast ion energy. 
–  The boundary between damping and drive is 

shown by the dashed blue lines. 

•  The BL2 sources add primarily fast ions 
with high pitch (Fig. b). 

Addition of BL-2 (2c) deposits resonant fast ions 
that are predicted to damp the GAE

k|| ≈
m− nq(r)
q(r)R

,   k⊥ ≈
m
r

Drive: k⊥ρ <1.9, Damping: k⊥ρ >1.9
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•  HYM is an initial value, hybrid code in 
toroidal geometry 

–  beam ion treated with full-orbit, δf scheme 

–  thermal plasma is one-fluid MHD 

•  Code can be non-linear, but only linear 
runs done here. 

•  Growth rate positive at 0.44s, negative 
at 0.47s with source 2c. 

HYM* code predicts mode instability  
at 0.44s, stable at 0.47s 

*Belova, PoP 10 (2003) 3240 
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•  Top figure shows positive growth 
rates for n = 7 – 12 

–  strong n = 8 – 11 shown above 

– weak n = 7 and 12 are also seen. 

•  Agreement with the experimentally 
observed frequencies is also good 

–  simple correction for Doppler shift added. 

HYM predicts frequencies of observed modes  
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•  ctr-propagating GAE have been correlated with flattening of the 
core electron temperature profile, possibly through enhanced 
electron thermal transport, or through some form of energy 
channeling. 

•  Experiments on NSTX-U with new neutral beam sources have 
found that the GAE can be completely suppressed with ≈25% 
of the beam power supplied by one of the new beam sources. 

•  Future experiments will explore GAE effect on electron heat 
transport. 

•  Hopefully, similar techniques can be extended to other 
instabilities. 

The GAE suppression seen with increased  
NBI power is reproduced with HYM simulations 
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•  Frequencies of GAE on NSTX-U consistent with this scaling. 

GAE frequency and toroidal mode number  
increase with toroidal field 
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• Note minimal hfAE activity 

‘Similar’ 1MA, 6MW NSTX-U H-mode 
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• Top panel shows GAE 
excited by inboard sources 
1b and 1c (blue and cyan, 
lower panel). 

• Outboard source 2a has 
block from 0.437s to 0.454s. 

• GAE amplitude grows during 
2a off-time, suppressed after. 

GAE grows during 2a beam block 
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• Significant amplitude in GAE 
frequency range only with no 
Beam Line 2 power. 

• A few exceptions are mostly 
from early GAE when q was 
probably high (no MSE data 
yet). 
– High q means high meff, means 

large k⊥, and Beam Line 2 could be 
destabilizing. 

Database supports anecdotal evidence 
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• GAE resonant with  trapped 
electrons:  
– direct electron heat transport… 

• …or, GAE ‘channel’ energy 
through GAE away from core:  
–  less core electron heating. 

• Control of GAE could help 
answer open questions about 
electron heat transport in STs. 

Global Alfvén eigenmodes on NSTX are an 
example of (possibly) deleterious EP modes 


