A New Scaling for Divertor Detachment

Detachment onset in ASDEX-U Potzel et al., Nuc. Fusion 2014

Rob Goldston, APS-DPP 2017

R. Goldston, M. Reinke, J. Schwartz **PPCF 2017**

> M. Reinke NF 2017

Lithium Vapor Box Divertor R. Goldston et al., NME, 2017

EU Demo1 is Large & Low Power

	EU DEMO1 2015				
R[m]	9.1				
Α	3.1	1. P			
B_T [T]	5.7	2. H			
I_P [MA]	20	3. N			
H (rad. cor.)	1.1	4. T			
$\beta_{N,tot}$ [%]	2.6	5. S			
$f_{bs}[\%]$	35	6. lı			
$P_{sep}/R[MW/m]$	17	7. 0			
$ au_{burn}[h]$	2	8. S			
$P_{el,net}[MW]$	500				

R. Wenninger et al., EPS 2015

How can this even *point to* a reasonable COE?

The Problem is Power Handling

Reasonable cost steady-state fusion power plant.

Add impurity seeding.

Decrease fusion power.

Increase size & I_p. Accept pulsed operation.

We need to understand this problem!

Parallel Heat Flux is too High

2P_{SOL}/ $\mathbf{3}$ \boldsymbol{B} \hat{q}_{\parallel} \approx $2\pi ig(R_{_0}+aig)\lambda_{_{int,OMP}} \,\,B_{_{p,OMP}}$

... because $\lambda_{int,OMP}$ is too low.

IR Data are Well Fit with "Eich Function"

$$q_{||}(x) = q_{||0} \int_{0}^{\infty} \left[\exp\left(\frac{-x'}{\lambda_{q}}\right) \right] \left\{ \frac{1}{\sqrt{\pi S}} \exp\left[\frac{-(x')}{\sqrt{\pi S}}\right] = \frac{q_{||0}}{2} \exp\left[\left(\frac{S}{2\lambda_{q}}\right)^{2} - \frac{x}{\lambda_{q}}\right] \exp\left[\left(\frac{S}{2\lambda_{q}}\right)^{2} - \frac{x}{\lambda_{q}}\right] = \frac{q_{||0}}{2} \exp\left[\left(\frac{S}{2\lambda_{q}}\right)^{2} - \frac{x}{\lambda_{q}}\right] \exp\left[\frac{S}{2\lambda_{q}}\right]$$

Convolve an exponential representing the near SOL, $exp(-x/\lambda_q)$, with a Gaussian

Heuristic Drift (HD) Model Fits λ_q Data Well

S appears to scale with λ_q

T. Eich et al. NF 2013

$S \approx 0.5 \lambda_q \implies \lambda_{int,OMP} \approx 1.8 \lambda_q$ **S** provides no relief, unless trends change dramatically.

The Problem can be Expressed Simply

If $\lambda_{int,OMP}$ scales ~ $\propto 1/B_p$ the q_{\parallel} problem scales ~ $\propto PB_t/R$. But we also need to know how the solution scales!

Lengyel Model for Cooling due to Impurities

Parallel heat flux is reduced by impurity cooling:

$$egin{aligned} q_{\parallel} &= \kappa_0 T_e^{5/2} \, rac{dT_e}{dz} & rac{dq_{\parallel}}{dz} = n_e n_z L_z = n_e^2 c_z L_z; \quad c_z \equiv rac{n_z}{n_e} \ \end{aligned}$$
Multiply these two equations together: $&rac{1}{2} \, rac{dq_{\parallel}^2}{dz} = n_e^2 c_z L_z \kappa_0 T_e^{5/2} \, rac{dT_e}{dz} \end{aligned}$

- Integrate dz and assume $p_e = n_e T_e = const.$ along B. $\Delta q_{\parallel}^2 = \int\limits_{T_{det}}^{T_{sep}} 2n_e^2 c_z L_z \kappa_0 T_e^2$
- Assume $c_z = const$.

$$T_{e}^{5/2} dT_{e} = 2 \Big(n_{e,sep}^{} T_{e,sep}^{} \Big)^{2} \int_{T_{det}}^{T_{sep}} c_{z}^{} L_{z}^{} \kappa_{0}^{} T_{e}^{1/2} dT_{e}^{} \\ rac{\Delta q_{\parallel}}{n_{e,sep}^{} c_{z}^{1/2}} = \Bigg(2 T_{e,sep}^{} \int_{T_{det}}^{T_{sep}} c_{z}^{} L_{z}^{} \kappa_{0}^{} T_{e}^{1/2} dT_{e}^{} \Bigg)^{1/2}$$

e

Use ADAS to Evaluate Lengyel Integral

- Includes finite lifetime non-coronal radiation
- Assume nearly all of *P*_{sep} must be dissipated to achieve detachment at a few eV.
- q_{\parallel} that can be detached scales as $n_{e,sep} C_z^{1/2} T_{sep}^{3/2}$
- Note that per electron, lithium is comparable to nitrogen.

NEW: Bring in Greenwald Density & Spitzer T_{sep}

- So far we have something very sim

$$m_{_{e,sep}} \propto f_{_{GW,sep}} rac{\left\langle B_{_p}
ight
angle}{a} \left(1+\kappa^2
ight)^{1/2} \qquad T_{_{e,sep}} \propto \left(q_{_{\parallel}}\ell_{_{\parallel}}^*q_{_{cyl}}R_{_0}
ight)^{2/7} \qquad \ell_{_{\parallel}}^* \equiv L_{_{\parallel}} / \left(\pi q_{_{cyl}}R_{_0}
ight)$$

• Multiply first equation by R_0 and substitute for $n_{e,sep}$ and $T_{e,sep}$.

$$R_{0}q_{\parallel} \propto f_{_{GW,sep}} \frac{R_{_{0}}}{a} \left\langle B_{_{p}} \right\rangle \left(1 + \kappa^{2}\right)^{1/2} \left(q_{\parallel}\ell_{\parallel}^{*}q_{_{cyl}}R_{_{0}}\right)^{3/7} c_{_{z}}^{1/2} \quad \Rightarrow \quad c_{_{z}} \propto \frac{\left(R_{_{0}}q_{\parallel}\right)^{8/7}}{f_{_{GW,sep}}^{2} \left(\ell_{\parallel}^{*}q_{_{cyl}}\right)^{6/7} \left(\frac{R_{_{0}}}{a}\right)^{2} \left\langle B_{_{p}} \right\rangle^{2} \left(1 + \kappa^{2}\right)^{6/7} \left(\frac{R_{_{0}}}{a}\right)^{6/7} \left(\frac{R_{_{0}}}{a}\right)^$$

nple:
$$q_{\parallel,det}\sim \propto n_{e,sep}T_{_{e,sep}}^{3/2}c_{_{z}}^{1/2}$$

Assume Greenwald density scaling & Spitzer electron thermal conduction:

• OOPS, we had before, very roughly, $q_{\parallel} \propto PB/R \Rightarrow Strong P scaling, no size scaling!$

Now Bring in HD λ_q to get $R_0 q_{\parallel}$

Using HD model for λ_q , with its implicit Spitzer model for $T_{e,sep}$:

$$q_{\parallel}R_{_{0}} \propto \frac{P}{\lambda_{_{q,HD}}} \frac{B_{_{t}}}{B_{_{p}}} \propto P_{_{sep}}^{7/8} B_{_{t}}^{3/4} \left\langle B_{_{p}} \right\rangle^{1/8} \frac{R_{_{0}}}{a} \left(1 + \kappa^{2}\right)^{-1/16} \left(\frac{\bar{A}}{1 + \bar{Z}}\right)^{-7/16} \left(\ell_{\parallel}^{*}\right)^{-1/8} \left(\frac{\bar{A}}{1 + \bar{Z}}\right)^{-1/8} \left(\frac{\bar{A}}{1 + \bar{Z}$$

Substitute this into the result from the last slide:

$$c_{z} \propto \frac{P_{sep} B_{t,0}^{6/7} \left(\frac{\bar{A}}{1+\bar{Z}}\right)^{-1/2}}{f_{GW,sep}^{2} \left(\frac{R_{0} q_{cyl}}{a}\right)^{6/7} \left\langle B_{p} \right\rangle^{13/7} \left(1+\kappa^{2}\right)^{15/14} \ell_{\parallel}^{*}}$$

• Lots of terms cancel:

$$c_z \propto \frac{P_{_{sep}}}{\left\langle B_p \right\rangle \ell_{\parallel}^* \left(1 + \kappa^2\right)^{3/2} f_{_{GW,sep}}^2} \left(\frac{1 + \bar{Z}}{\bar{A}}\right)^{1/2}$$

- If you take into account the solution as well as the problem, the difficulty scales as P/B_p not as PB_t/R .
- No wonder making the machine larger doesn't help.
- Surprisingly, you want higher field, not larger size.

We Should not Have Been Surprised

Ignoring temperature variation

$$P_{_{rad}} \propto c_{_{z}} n_{_{e}}^{2} V \quad \Rightarrow \quad c_{_{z}} \propto rac{1}{n_{_{sep}}^{2} \lambda_{_{HD}} Ra\ell_{\parallel}^{*} \left(1+\kappa^{2}
ight)^{1/2}}$$

The HD model and the Greenwald density are

$$\lambda_{_{HD}} \propto rac{a}{RB_{_p}} \qquad n_{_{sep}}^2 \propto f_{_{GW}}^2 rac{B_{_p}^2}{a^2} \Big(1 - rac{b^2}{a^2}\Big) + rac{b^2}{a^2} \Big) + rac{b^2}{a^2} \Big(1 - rac{b^2}{a^2}\Big) + rac{b^2}{a^2} \Big) + rac{b^2}{a^2} + rac{b^2}{a^2} \Big) + rac{b^2}{a^2} + rac^2 + rac{b^2}{a^2} + rac{b^2}{a^2}$$

Giving the familiar result: •

$$c_z \propto rac{P_{sep}}{B_p \ell_{\parallel}^* ig(1+\kappa^2ig)^{3/2} f_{GW}^2}$$

Matt Reinke & I arrived at the "Taming the Flame" Lorentz Workshop in Sept. 2016, already looking into these ideas. We worked together and improved each other's thinking. See his paper in NF, 2017.

$$P_{_{sep}}$$

$$-\kappa^2 \Big)$$

Credit Where Credit is Due Dept.

How Serious is This Problem?

	C-Mod	ASDEX-U	JET	ITER	FNSF (A=4)	EU Demo1
Psep	3.83	10.7	14	100	96	154.7
Bt	5.47	2.5	2.5	5.3	7.0	5.7
R ₀	0.7	1.6	2.9	6.2	4.5	9.1
P _{sep} /R	5.5	6.7	4.8	16.1	21.3	17.0
P _{sep} B _t /R	29.9	16.7	12.1	85.5	149.3	96.9
lp	0.82	1.2	2.5	15	7.5	20
а	0.22	0.52	0.90	2.00	1.13	2.94
K 95	1.51	1.63	1.73	1.80	2.10	1.70
< B _p >	0.58	0.34	0.39	1.03	0.81	0.98
q _{cyl}	3.78	3.16	2.79	2.42	3.55	2.62
n _{Gw}	5.39E+20	1.44E+20	9.82E+19	1.19E+20	1.89E+20	7.39E+19
Projected c _N for detachment from AUG	1.0%	4.0%	4.1%	10.1%	8.6%	18.8%

Pretty serious.

Parallel Connection Length May be a Useful Knob

Fig. 6: (a) Reference configuration and alternative configurations including (b) an X divertor, (c) a Super-X divertor and (d) a snowflake divertor.

		SND	XD	SXD	SFD	Limit
Costs	Max $\Sigma I_{PF} $ (Ma turns)	160	194	164	174	
	Total I _{PF,internal} (MA turns)	-	10	-	-	
	Max. force on single coil $F_{z,PF}$ (MN)	145	301	451	439	<450
	Max. CS separation force $F_{z,CS}$ (MN)	130	244	284	329	<350
	Flux swing (Vs)	330	340	297	215	
	Norm. TF coil volume $V_{\text{TF}}/V_{\text{plasma}}$	2.9	3.6	4.2	3.8	
ts	$L_{\parallel,\text{outer}}$ (r_u =3mm) (m)	114	146	158	245	
Benefi	$f_{\rm x,t}/f_{\rm x,min}$		1.43	1	1	
	$R_{\rm t}/R_{\rm x}$	1.04	1.14	1.34	1.19	

H. Reimerdes ???

 $c_z \operatorname{down} x2$

Detachment Tends to Run up to the X-Point

S. Potzel et al. NF 2014

This exposes the core to impurity influx.

Lithium Vapor Box Should Provide Stable Detachment

- Multiple boxes are used to provide differential pumping.
- Lithium recirculates via capillary action (like a heat pipe)
- Bottom box provides enough lithium to detach.
 - Higher boxes are cooler, less dense.
- Plasma detachment should be very stable.

Picture of vapor calculation with efflux calculation from Eric.

Conclusions

- Attempting to achieve ITER-like $q_{\parallel} \propto PB/R$ drives Demo designs to large size and low power.
- The difficulty-of-detachment parameter is more likely *P*/*B*_{*p*}
 - We should perform numerical and laboratory experiments to test this hypothesis.
 - This is further motivation for compact high-field designs.
- Enhancing the divertor leg length should reduce the impurity content required for detachment.
- Detachment stability can be assured by localizing the impurity influx, as in a Vapor Box Divertor.