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NSTX upgrade added a 2nd neutral beam  
and increased the toroidal field 

Motivation: 
•  Current profile control 

–  off-axis beam to broaden current profile 
•  Non-inductive current drive 

–  Tangential NBI à 2× current drive efficiency 
•  Higher field, higher plasma current 

–  support increased heating power 

•  Transport, power handling and stability 
studies… 
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•  Higher field 
–  extends Vfast/VAlfvén range to sub-

Alfvénic (conventional tokamak 
space). 

•  New beams allow control of fast-
ion distribution function 
–  hollow fast ion density profiles (TAE*) 
–  control of fast-ion pitch distribution.  

New capabilities also impact mission to study  
energetic particle driven instabilities 
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•  Intermediate frequency 
are ctr-propagating:  
–  Global Alfvén eigenmodes 
–  Compressional Alfvén 

eigenmodes 

 

ITER, fusion reactors will operate with super-
Alfvénic fast ions => fast-ion driven instabilities 

•  Lower frequency - 
–  Fishbones (EPM) 
–  BAAE 
–  BAE 
–  Toroidal Alfvén eigenmodes 

•  Near the ion cyclotron 
frequency are: 
–  co-Compressional Alfvén 

eigenmodes (CAE)  
–  Ion Cycl. emission (ICE) 
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•  Each new source can suppress Global Alfvén eigenmodes (GAE). 
•  Suppression occurs within milliseconds, e.g., it’s the fast ions. 

Early in NSTX-U operation it was seen that  
adding beam power could suppress GAE 
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Strong anti-correlation between GAE activity  
and heating with BL-2 sources 

•  Transition events show clearest demonstration of suppression, 
–  reduction of ctr-GAE amplitude with turn-on of outboard source 
–  or, growth of ctr-GAE amplitude with turn-off of outboard source. 

•  More than 120 examples of transition events;  
–  BL-2 source turning on or off, during a plasma heated by BL-1. 

•  In most cases, complete suppression is seen with BL-2,  
–  however, particularly with the on axis source, GAE may persist. 

•  Observations are qualitatively consistent with an analytic model of 
Doppler-shifted ion-cyclotron-resonance drive of GAE. 

•  HYM-code simulations, with more complete physics model, also 
predict new, off-axis, beams can suppress GAE. 
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Magnetic axis
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New sources added to provide more power  
and current profile control are aimed off-axis 

•  Tangency radii of new beams for 
current profile control outside 
magnetic axis. 

•  Fast ions deposited with high pitch 
(V||/V), velocity nearly parallel to 
magnetic field. 

•  Suppression of GAE discovered on 
NSTX-U with injection of new 
neutral beams. 
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New sources added to provide more power  
and current profile control are aimed off-axis 

•  Tangency radii of new beams for 
current profile control outside 
magnetic axis. 

•  Fast ions deposited with high pitch 
(V||/V), velocity nearly parallel to 
magnetic field. 

•  Suppression of GAE discovered on 
NSTX-U with injection of new 
neutral beams. 
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Suppression can occur in msec; fast ion 
distribution, not equilibrium changes, responsible 
•  Suppression occurs in msecs, 

–  only a few BL-2 fast ions added. 

•  Typical fast-ion slowing down 
time is of order >25 ms 
–  full-energy BL-2 fast ions 

responsible for suppression? 

•  Blue curve is total BL-1 
source power, red curve is 
BL-2. 

2b 
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Even if suppression isn’t complete, there is a 
strong reduction in mode amplitude  

•  Happens most commonly early in the 
plasma, probably when q is still high, 
density is low. 

•  Incomplete suppression is also more 
common the deepest of the new 
sources (closest to BL-1 sources). 

•  This is a fairly extreme example with 
only ≈15% of the total power coming 
from a BL-2 source. 
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•  Database constructed from 2016 
shots where BL-2 source injected 
during strong GAE activity. 

•  Histogram of fractional drop in 
mode amplitude 25ms after 
injection of a BL-2 source; 
–  comparison of amplitude averaged over 

10 ms before, to 20-30 ms after injection. 

•  Counts in red all from 2-day XP 
focused on H-mode access; 
–  unique characteristic of these shots 

hasn’t been identified. 

Database constructed from NSTX-U shots shows 
BL-2 is very effective for suppressing GAE 
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Strong anti-correlation between GAE activity and 
heating with BL-2 

•  Transient events show clearest demonstration of suppression, 
–  reduction of ctr-GAE amplitude with turn-on of outboard source 
–  or, growth of ctr-GAE amplitude with turn-off of outboard source. 

•  More than 120 examples of transient events; BL2 source 
turning on or off, during a plasma heated by BL1. 

•  In most cases, complete suppression is seen with BL-2 on,  
–  however, particularly with the most inboard source, GAE may persist. 

•  Observations are qualitatively consistent with analytic model of 
cyclotron-resonance drive of GAE. 

•  HYM-code simulations, with more complete physics model, 
also predict new, off-axis, beams can suppress GAE. 
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•  GAE appear after BL-2 source turns off. 

•  Modes evolve from dominantly n=-9 to 
dominantly n=-11. 

•  GAE suppressed again, late in discharge, 
when BL-2 comes back on. 

•  BL-2 provides roughly 25% of total power. 

•  Plasma is in L-mode, but suppression is 
also seen for H-mode plasmas. 

An example with strong GAE activity before 
suppression is chosen for analysis 
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•  GAE bursting before modes are 
suppressed. 

•  Analysis done at two times: 
–  0.44s,during GAE activity (w/o 2c), 
–  0.47s, after 2c on. 

•  GAE suppression noticeable within 
milliseconds. 

•  BL-2 (source 2c) only adds ≈1.2MW 
out of 4.6MW, ≈26%. 

Analytic model evaluated and HYM simulations  
done before and after BL-2 turns on. 
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•  Reflectometer response combines 
“interferometer” response and cut-off 
layer displacement, 

•  Reflectometer data inverted with 
iterative model, 
– trial function  

•  Structure peaks near minimum in q, 
as expected for GAE. 
– nearly constant phase over radius. 

Reflectometer array* shows mode structure as  
expected for global Alfvén eigenmodes 
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•  Fast ions can be stabilizing/
destabilizing depending on 
their k⊥ρL: 

    Stable    : 
    Unstable: 

•  Resonant outboard beam 
ions with pitch > 0.9 have 
small ρL, are stabilizing by 
this theory. 

 

Analytic model* qualitatively predicts low k⊥ρL  
(high pitch) fast ions will stabilize GAE  

0 ≤ k⊥ρL ≤1.9
1.9 ≤ k⊥ρL ≤ 3.9
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•  Experimental mode 
frequency used to estimate 
k|| from dispersion relation: 

•  Experimental inputs are q, 
density, rotation profiles and 
mode frequency, toroidal 
mode number. 

Local dispersion relation and experimental 
parameters are used to deduce k|| and k⊥ 

ωGAE ≈min k||VAlfvén (r)+ nωrot (r)

k|| ≈
m− nq
qR
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•  Experimental mode 
frequency used to estimate 
k|| from dispersion relation: 

•  Experimental inputs are q, 
density, rotation profiles and 
mode frequency, toroidal 
mode number. 

Analytic theory predicts GAE amplitude  
to peak near minimum in continuum 

ωGAE ≈min k||VAlfvén (r)+ nωrot (r)

k|| ≈
m− nq
qR
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•  The parallel beam ion velocity for 
resonant fast ions is estimated from the 
resonance condition: 
–    

–  the sidebands arise from particle drifts 

 

•  Two side-band fast ion resonances are 
indicated by black lines in the figures. 
–  lines show fast ions at constant parallel velocity. 
–  gaining/losing perpendicular energy moves fast 

ions along black resonance lines. 

TRANSP modeling predicts that  
beam fast ions are resonant with the GAE   
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k⊥ρ>1.9k⊥ρ>1.9

a) 0.44s b) 0.47s
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•  k|| estimated above is used to calculate k⊥: 

–  The boundary between fast ions that drive vs 
damp the mode is: 

•  …where ρL is calculated from the 
perpendicular fast ion energy. 
–  The boundary between damping and drive is 

shown by the dashed blue lines. 

•  The BL2 sources add primarily fast ions 
with high pitch (Fig. b). 

Addition of BL-2 (2c) deposits resonant fast ions 
that are predicted to damp the GAE

k|| ≈
m− nq(r)
q(r)R

,   k⊥ ≈
m
rs

Drive: k⊥ρL >1.9, Damping: k⊥ρL <1.9
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ω/ωci ≈ 0.3#
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-  6•  HYM is an initial value, hybrid code in 
toroidal geometry 
–  beam ions treated with full-orbit, δf scheme 
–  thermal plasma is one-fluid MHD 

•  Code can run non-linear, but only linear 
results shown here. 

•  Growth rate positive at 0.44s, negative at 
0.47s with added source 2c. 

•  Simulated growth rates sensitive to fast 
ion distribution. 

HYM* code predicts mode instability  
at 0.44s, stable at 0.47s 

*Belova, PoP 10 (2003) 3240 
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•  Top figure shows positive growth 
rates for n = -7 to -12 

–  strong n = -8 to -11 shown above 

– weak n = -7 and -12 are also seen. 

•  Agreement with the experimentally 
observed frequencies is also good 

–  frequencies corrected with a simple 
estimate for the Doppler shift. 

HYM predicts frequencies of observed modes  
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•  Experiments on NSTX-U with new neutral beam sources have 
found that the GAE can be completely suppressed with ≈25% 
of the beam power supplied by one of the new beam sources. 

•  A qualitative explanation is found in an analytic model for GAE 
drive through the Doppler-shifted cyclotron resonance. 

•  Quantitative simulations with the hybrid MHD code, HYM, find 
excellent agreement with the experimental observations. 

•  Extension of similar techniques to other instabilities may 
provide an efficient method of improving fusion reactor 
efficiency. 

GAE suppression with increased  
NBI power is robustly observed 
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• For more information on HYM-code simulations, 
please see at the NSTX-U poster session this 
afternoon: 
– Numerical simulations of GAE stabilization in NSTX- U 

E. Belova  PP11-45   
– Energetic-particle-modified global Alfvén Eigenmodes  

J. Lestz  PP11-46 
– Destabilization of counter-propagating TAEs by off- axis, co-

current Neutral Beam Injection   
M Podestà  PP11 50 
 

Related posters 
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•  Frequencies of GAE on NSTX-U consistent with this scaling. 

GAE frequency and toroidal mode number  
increase with toroidal field 
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kV beams 
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• Density similar 

• Note minimal hfAE activity 

‘Similar’ 1MA, 6MW NSTX-U H-mode 
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• Top panel shows GAE 
excited by inboard sources 
1b and 1c (blue and cyan, 
lower panel). 

• Outboard source 2a has 
block from 0.437s to 0.454s. 

• GAE amplitude grows during 
2a off-time, suppressed after. 

GAE grows during 2a beam block 
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• Significant amplitude in GAE 
frequency range only with no 
Beam Line 2 power. 

• A few exceptions are mostly 
from early GAE when q was 
probably high (no MSE data 
yet). 
– High q means high meff, means 

large k⊥, and Beam Line 2 could be 
destabilizing. 

Database supports anecdotal evidence 
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• GAE resonant with  trapped 
electrons:  
– direct electron heat transport… 

• …or, GAE ‘channel’ energy 
through GAE away from core:  
–  less core electron heating. 

• Control of GAE could help 
answer open questions about 
electron heat transport in STs. 

Global Alfvén eigenmodes on NSTX are an 
example of (possibly) deleterious EP modes 


