A New Scaling for Divertor Detachment

Rob Goldston, APS-DPP 2017

M. Bernert, NME 2016

R. Goldston, M. Reinke, J. Schwartz PPCF 2017 M. Reinke NF 2017

EU Demo1 is Large & Low Power

R. Wenninger et al., EPS 2015

How can this even point to a reasonable COE?

The Problem is Power Handling

Reasonable cost steady-state fusion power plant.

Add impurity seeding.

Decreases DT fuel density.

Increase size & I_p for gain.

Accept pulsed operation for gain & higher density.

Cost too high. Power too low. Heat flux STILL too high!

We need to understand this problem!

Parallel Heat Flux is too High

$$\begin{split} \hat{q}_{\parallel,OMP} \lambda_{int,OMP} &\equiv \int q_{\parallel,OMP} \, dR \\ 2\pi \Big(R_0 + a\Big) \hat{q}_{\parallel,OMP} \lambda_{int,OMP} \, \frac{B_{p,OMP}}{B_{OMP}} = \frac{2P_{sep}}{3} \\ \hat{q}_{\parallel} &= \frac{2P_{sep}/3}{2\pi \Big(R_0 + a\Big) \lambda_{int,OMP}} \frac{B}{B_{p,OMP}} \end{split}$$

... because $\lambda_{int,OMP}$ is too low.

IR Data are Well Fit with "Eich Function"

Convolve an exponential representing the near SOL, $exp(-x/\lambda_q)$, with a Gaussian representing diffusive spreading below the X-point, $exp(-x^2/S^2)$.

$$q_{\parallel}(x) = q_{\parallel 0} \int_{0}^{\infty} \left[\exp\left(\frac{-x'}{\lambda_{q}}\right) \right] \left\{ \frac{1}{\sqrt{\pi S}} \exp\left[\frac{-(x')}{\sqrt{\pi S}}\right] = \frac{q_{\parallel 0}}{2} \exp\left[\left(\frac{S}{2\lambda_{q}}\right)^{2} - \frac{x}{\lambda_{q}}\right] \exp\left[\left(\frac{S}{2\lambda_{q}}\right)^{2} - \frac{x}{\lambda_{q}}\right] = \frac{q_{\parallel 0}}{2} \exp\left[\left(\frac{S}{2\lambda_{q}}\right)^{2} - \frac{x}{\lambda_{q}}\right] \exp\left[\frac{S}{2\lambda_{q}}\right]$$

Heuristic Drift (HD) Model Fits λ_q Data Well

Projects to ITER, Demo $\lambda_q \sim 1$ mm!

S Appears to Scale with λ_{q_i} not Device Size

 $S \approx 0.5 \lambda_q \Rightarrow \lambda_{int,OMP} \approx 1.8 \lambda_q$ S provides no relief, unless trends change dramatically.

T. Eich et al. NF 2013

The <u>Problem</u> can be Expressed Simply

If $\lambda_{int,OMP}$ scales ~ $\propto 1/B_p$ the q_{\parallel} problem scales ~ $\propto PB/R$. So reactor designers constrain *PB/R* or *P/R*. But we need to take into account how the solution scales too!

$$\hat{q}_{\parallel} = \frac{2P_{SOL}/3}{2\pi \left(R_0 + a\right)\lambda_{int,OMP}} \frac{B}{B_{p,OMP}}$$

D. Brunner CO4: 00002

Lengyel Model for Cooling due to Impurities

$$rac{dq_{\parallel}}{dz} = n_e n_z L_z = n_e^2 c_z L_z; \quad c_z \equiv rac{n_z}{n_e}$$

- Multiply these two equations togeth

Assume local impurity cooling and Spitzer electron thermal conduction.

$$\begin{split} q_{\parallel} &= \kappa_{_{0}} T_{_{e}}^{5/2} \, \frac{d T_{_{e}}}{d z} \\ \text{ner.} \quad \frac{1}{2} \frac{d q_{\parallel}^{2}}{d z} &= n_{_{e}}^{2} c_{_{z}} L_{_{z}} \kappa_{_{0}} T_{_{e}}^{5/2} \, \frac{d T_{_{e}}}{d z} \end{split}$$

• Integrate dz and assume $p_e = n_e T_e = const.$ along B (down to the detachment region).

Use ADAS to Evaluate Lengyel Integral

- Assume nearly all of P_{sep} must be dissipated to achieve detachment at a few eV. (Not always true in present expt's.)
- Include finite-lifetime non-coronal radiation in evaluating R.H.S.
- q_{II} that can be detached scales as $n_{e,sep} C_z^{1/2} T_{sep}^{3/2}$
- Note that per electron, lithium is comparable to nitrogen.

Bring in Greenwald Density & Spitzer T_{sep}

- So far we have something very simple:

$$m_{_{e,sep}} \propto f_{_{GW,sep}} rac{\left\langle B_{_p}
ight
angle}{a} \left(1+\kappa^2
ight)^{1/2} \qquad T_{_{e,sep}} \propto \left(R_{_0}q_{_\parallel}\ell^*_{_\parallel}q_{_{cyl}}
ight)^{2/7} \qquad \ell^*_{_\parallel} \equiv L_{_\parallel}/\left(\pi q_{_{cyl}}R_{_0}
ight)$$

• Multiply top equation by R_0 and substitute for $n_{e,sep}$ and $T_{e,sep}$.

$$\begin{split} R_{0}q_{\parallel} \propto f_{_{GW,sep}} \frac{R_{_{0}}}{a} \left\langle B_{_{p}} \right\rangle & \left(1 + \kappa^{2}\right)^{1/2} \left(R_{_{0}}q_{\parallel}\ell_{\parallel}^{*}q_{_{cyl}}\right)^{3/7} c_{_{z}}^{1/2} \quad \Rightarrow \quad c_{_{z}} \propto \frac{\left(R_{_{0}}q_{\parallel}\right)^{8/7}}{f_{_{GW,sep}}^{2} \left(\ell_{\parallel}^{*}q_{_{cyl}}\right)^{6/7} \left(\frac{R_{_{0}}}{a}\right)^{2} \left\langle B_{_{p}} \right\rangle^{2} \left(1 + \kappa^{2}\right)^{6/7} \left(\frac{R_{_{0}}}{a}\right)^{2} \left\langle B_{_{p}} \right\rangle^{2} \left(1 + \kappa^{2}\right)^{6/7} \left(\frac{R_{_{0}}}{a}\right)^{2} \left\langle B_{_{p}} \right\rangle^{2} \left(1 + \kappa^{2}\right)^{6/7} \left(\frac{R_{_{0}}}{a}\right)^{6/7} \left(\frac{R_{_{0}}}{a}\right)^{6/7} \left(\frac{R_{_{0}}}{a}\right)^{2} \left(R_{_{p}}\right)^{6/7} \left(\frac{R_{_{0}}}{a}\right)^{6/7} \left(\frac{R_{_{0$$

• OOPS, we had before, $q_{\parallel} \sim \propto PB/R \Rightarrow Strong P \& B scalings, no size scaling!$

 $q_{\parallel,det} \sim \propto n_{e,sep} T^{3/2} c_z^{1/2}$

Assume Greenwald density scaling & Spitzer electron thermal conduction:

Now Use HD λ_q to Evaluate $R_0 q_{\parallel}$

• Using HD model for λ_q , with its Spitzer model for $T_{e,sep}$:

$$q_{\parallel} R_{0} \propto \frac{P_{_{sep}}}{\lambda_{_{q,HD}}} \frac{B_{_{t}}}{B_{_{p}}} \propto P_{_{sep}}^{7/8} B_{_{t}}^{3/4} \left\langle B_{_{p}} \right\rangle^{1/8} \frac{R_{_{0}}}{a} \left(1 + \kappa^{2}\right)^{-1/16} \left(\frac{\bar{A}}{1 + \bar{Z}}\right)^{-7/16} \left(\ell_{\parallel}^{*}\right)^{-1/8} \left(\frac{\bar{A}}{1 + \bar{Z}}\right)^{-1/8} \left(\ell_{\parallel}^{*}\right)^{-1/8} \left(\frac{\bar{A}}{1 + \bar{Z}}\right)^{-1/8} \left(\ell_{\parallel}^{*}\right)^{-1/8} \left(\frac{\bar{A}}{1 + \bar{Z}}\right)^{-1/8} \left(\ell_{\parallel}^{*}\right)^{-1/8} \left(\ell_{\parallel}$$

• Substitute this into the result from the last slide:

 $P_{sep}B_{t,0}^{6/7}\left(\frac{\bar{A}}{1+\bar{Z}}\right)$

$$f_{GW,sep}^{z} \left(\frac{R_{0}q_{cyl}}{a} \right)^{6/7} \left\langle B_{p} \right\rangle^{13/7} \left(1 + \kappa^{2} \right)^{15/7} dz$$

• Lots of terms cancel:

/14	ℓ^*_{\parallel}
\overline{Z}	$\Big)^{1/2}$

- If you take into account the solution as well as the *problem*, the difficulty of detachment scales as P/B_p not as PB/R.
- No wonder making the machine larger doesn't help.
- Surprisingly, you want higher B_p, higher ℓ_{\parallel} , and higher κ , not larger size.

We Really Should Not Have Been Surprised

$$P_{_{rad}} \propto n_{_e} n_{_z} V = c_{_z} n_{_e}^2 V \quad \Rightarrow \quad c_{_z} \propto$$

• The HD model (at fixed T) and the Greenwald density are

$$c_{z} \propto \frac{P_{sep}}{B_{p} \ell_{\parallel}^{*} (1+\kappa^{2})^{3/2} f_{GW}^{2}} \left(\frac{1+\bar{Z}}{\bar{A}}\right)^{1/2}$$

Ignore temperature variation and use ultra-simple radiation scaling.

$$\frac{1}{n_{sep}^2 \lambda_{HD} Ra\ell_{\parallel}^* \left(1+\kappa^2\right)^{1/2}}$$

This gives the exact same result we had from the Lengyel calculation.

<u>λ_a Gets You Coming & Going</u>

The same narrow λ_{int} that made $q_{||}$ very high also takes away the scrape-off layer volume needed to radiate away that high q_{\parallel} .

Taming the Flame Divertor Detachment Control in Tokamaks

Workshop: 19 – 23 September 2016, Leiden, the Netherlands

OUT DIFFER OUT EUROfusion

Lorentz

center

NWO

ntzcenter.nl

Scientific • Raffaele Albanese, UNFII Naples Organizers • Marco de Baar, DIFFER Eindhoven Tony Donné, EUROfusion Piero Martin, U Padova Maarten Steinbuch, TU Eindhoven Invited i • Marco Ariola, Parthenope U Naples Speakers I • Rob Goldston, PPPL Princeton James Harrison, CCFE Culham Egemen Kolemen, Princeton U **Emmanuel Witrant, UJF Grenoble** For registration see: www.lorentzcenter. The workshop focuses on methods for divertor detachmen control to prevent damage to the components during th power exhaust of a fusion plasma. Image: The Iron Rollin Adolph Menzel (1875). Poster design: SuperNova Studios . N

STW

e

FOM

o r

Universiteit Leiden The Netherlands

W

W

Lorentz

center

Credit where Credit is Due Dept.

Matt Reinke & I arrived at the "Taming the Flame" Lorentz Workshop in Sept. 2016, already looking into these ideas. We worked together and improved each other's thinking. See also Matt's paper: NF, 2017.

How Serious is This Problem?

	C-Mod	ASDEX-U	JET	ITER	FNSF (A=4)	EU Demo1
Psep	3.83	10.7	14	100	96	154.7
Bt	5.47	2.5	2.5	5.3	7.0	5.7
R ₀	0.7	1.6	2.9	6.2	4.5	9.1
P _{sep} /R	5.5	6.7	4.8	16.1	21.3	17.0
P _{sep} B _t /R	29.9	16.7	12.1	85.5	149.3	96.9
lp	0.82	1.2	2.5	15	7.5	20
а	0.22	0.52	0.90	2.00	1.13	2.94
K 95	1.51	1.63	1.73	1.80	2.10	1.70
<b<sub>p> Q_{cyl}</b<sub>	0.58	0.34	0.39	1.03	0.81	0.98
	3.78	3.16	2.79	2.42	3.55	2.62
NGW	5.39E+20	1.44E+20	9.82E+19	1.19E+20	1.89E+20	7.39E+19
Projected c _N for detachment from AUG	1.0%	4.0%	4.1%	10.1%	8.6%	18.8%

Pretty serious.

Detachment Tends to Run up to the X-Point

ℓ_{\parallel}^* May be a Useful Knob

		SND	SFD+/-	Limit
ints	Max. force on single coil F _{z, PF} (MN)	145	439	< 450
Constrai	Max. vertical force on CS F _{z, PCS} (MN)	130	28	<300
Cor	Max. CS separation force F _{z,CS} (MN)	130	329	< 350
	Max. Σ I _{PF} (MA·turns)	160	174	
Costs	Total I _{PF,internal} (MA·turns)	-	-	
	Flux swing for current drive (V · S)	330	215	
	V _{TF} /V _{plasma}	2.9	3.8	+ 31%
Benefits	L _{,outer} (ρ _u =3mm) (m)	110	232/234	
	$f_{\rm x,t}/f_{\rm x,min}$	1	1	
	$R_{\rm t}/R_{\rm x}$	1.04	1.19	

H. Reimerdes, 2016 4th IAEA Demo Programme Workshop SFD

• If you have plenty of ℓ_{\parallel}^* you gain stability against variations in P_{sep} and n_{sep} .

Lithium Vapor Box Provides Stable Detachment

- Multiple boxes are used to provide strong differential pumping of Li.
- Lithium recirculates via capillary action (like in a heat pipe).
- Reduced Li thermal force along *B*, and reduced neoclassical pinch across *B* should reduce core impurity level.
- Bottom box provides enough lithium vapor to detach 200 MW.
 - Higher boxes are cooler, less dense.
 - Efflux to main chamber, 20 mg/s

Plasma detachment cannot move to the X-point.

E. Emdee et al., Poster PP11.00094... NOW!

- Difficulty of detachment is better characterized by P/B_p than PB/R.
 - We should perform numerical studies and laboratory experiments to confirm this hypothesis.
- This adds motivation for more compact, higher B reactor designs.
 - A Divertor Test Tokamak should have relevant P/B_p.
- Enhancing the divertor leg parallel length should reduce the impurity content required for detachment, and improve its stability.
- Detachment location can be assured by localizing the impurity influx, as in a Lithium Vapor Box Divertor.

Conclusions