

Disruption Event Characterization and Forecasting (DECAF) in Tokamaks

S.A. Sabbagh¹, J.W. Berkery¹, Y.S. Park¹, J.H. Ahn¹, Y. Jiang¹, J.D.
Riquezes¹, R.E. Bell², M.D. Boyer², A.H. Glasser³, J. Hollocombe⁴, J. Kim⁵, A.
Kirk⁴, J. Ko⁵, W. Ko⁵, L. Kogan⁴, B. LeBlanc², J.H. Lee⁵, Y.K. Oh⁵, F. Poli², S.D.
Scott², A. Thornton⁴, L. Terzolo⁵, S.W. Yoon⁵, S.J. Wang⁵, Z.R. Wang²

¹Department of Applied Physics, Columbia University, New York, NY ²Princeton Plasma Physics Laboratory, Princeton, NJ ³Fusion Theory and Computation, Inc., Kingston, WA ⁴Culham Centre for Fusion Energy, UKAEA, Abingdon, UK ⁵National Fusion Research Institute, Daejeon, Republic of Korea

V2.7

60th APS Division of Plasma Physics Meeting 6 November 2018

Portland, OR

MAST-U **K§TAR**

Supported by US DOE grants DE-SC0016614, DE-SC0018623, DE-FG02-99ER54524 and contract DE-AC02-09CH11466

A broadened disruption prediction and avoidance approach is progressing for ITER and future tokamaks

□ <u>Motivation</u>: Disruption prediction/avoidance is a critical need

- □ <u>Why</u>? A disruption <u>stops</u> plasma operation, might cause device damage
- A highest priority DOE FES (Tier 1) initiative present "grand challenge" in tokamak stability research:
 - <u>Can be done</u>! (JET tokamak: < 4% disruptions with carbon wall)
 - ITER disruption allowance: < 1 2% (energy + E&M loads); << 1% (runaways)

Talk Outline

- Disruption predictor requirement metrics
- Disruption Event Characterization and Forecasting (DECAF) approach
- Physical models in DECAF, continued progress toward early prediction
- Initial multiple-device, large database analysis
- Present evolution of disruption forecasting performance

DECAF is a logical, physics-based paradigm that meets all disruption predictor requirement metrics

D. Humphreys, et al., PoP 22 (2015) 021806

"Health"

Plasma

DECAF determines disruption triggers and automatically generates event chains

- Global MHD mode trigger
- □ Warning time: 30 ms
 - <u>Absolute</u>: Just sufficient time for disruption mitigation in ITER
 - <u>Normalized</u>: ~ 6 RWM growth times in NSTX – far longer time (~ s) in ITER

Events (in this chain)

- Fresistive wall mode
 - VDE vertical instability
 - wec wall proximity control
- □ **>LON** low density warning
 - **DIPR** not meeting I_p request
- LOQ low q warning
 - DIS disruption

(current quench)

Reduced kinetic MHD model in DECAF provides early forecast of instability boundary to global MHD modes

Full physics model (years of effort) reduced

- Stability contours CHANGE for each time point
- Allows real-time stability and mode growth rate prediction

J.W. Berkery, S.A. Sabbagh, R. Bell, et al., Phys. Plasmas 24 (2017) 056103

unstable (stringent evaluation)

- 44% predicted unstable < 320 ms (approx. $60\tau_w$) before current quench
- 33% predicted unstable within 100ms of a minor disruption

Recently a density limit model has been examined in DECAF based on power balance in an island

Local island power balance limit

- Power balance in island between Ohmic heating and radiated power loss
- If radiated power at the island exceeds the input power (P_{loss} > P_{input}), island grows

<u>Power density balance</u>: $P_{\text{loss}} < P_{\text{input}}$

D. Gates et al., Phys. Rev. Lett. 108 165004 (2012)

DECAF density limit analysis started: global, local density limits examined, correlation of MHD onset near limits

More powerful automated MHD event objects have been developed for DECAF

New DECAF MHD events utilize history of 15 criteria to define time evolving disruption warning level

Progress on DECAF now moving to processing of multi-machine databases

Analysis

Kine equil / stat analy KST. plani MAS

databa starte

> 🗆 Requ stora DEC analy

515								
tic librium bility ysis on AR; ned for ST	Device / Capability	KSTAR	MAST	NSTX	DIII-D	тсv		
	Full database access (type)	Yes (MDSplus)	Yes (UDA)	Yes (MDSplus)	Yes (MDSplus)	Yes (MDSplus)		
	Database analysis	continuing	continuing	continuing		started		
Fase	Equilibrium analysis	Kinetic + MSE	scheduled	Kinetic + MSE	available			
d uires	Stability	Ideal, Resistive Kinetic MHD	scheduled	Ideal, kinetic MHD (resistive)	Ideal, kinetic MHD			
ige of AF	shot*seconds (for kinetic analysis)	1,886 (2016+2017)	2,667 (est) (M5 - M9 runs)	2,000 / year (est)				

□ Aim to add ASDEX-U next, then JET and C-Mod databases

Tearing mode stability examined in KSTAR plasmas varied β_N, q₉₅ (supports future DECAF models)

- □ Classical tearing stability index, Δ' , computed at q = 2 surface using outer layer solutions
- □ At higher q_{95} , Δ' is mostly positive predicting unstable classical tearing mode
 - Indicates neoclassical effects, additional physics are needed to produce stability
- □ Time evolution of ideal MHD stability <u>also</u> computed with DCON to support DECAF

See POSTER version of talk (next session) for more See CP11.00100: Y.S. Park See CP11.00099: Y. Jiang

Initial DECAF analysis of large databases further supports result that disruptivity doesn't increase with β_N

DECAF provides early disruption warning and understanding of disruption event chain beyond disruptivity plots

Example: What are the most important regions to study on this plot?

DECAF provides early disruption warning and understanding of disruption event chain beyond disruptivity plots

- Example: What are the most important regions to study on this plot?
 - Studies usually focus on the high disruption probability regions
 - What causes the disruptions? (low β_N, mid-l_i???)
 - Problem → plasma conditions can change significantly between first problem detected and when disruption happens

DECAF provides early disruption warning and understanding of disruption event chain beyond disruptivity plots

- Example: What are the most important regions to study on this plot?
 - Studies usually focus on the high event probability regions
 - What causes the disruptions? (low β_N, mid-l_i???)
 - <u>Problem</u> → plasma conditions can change significantly between first problem detected and when disruption happens

□ <u>Answer</u>: the <u>circles</u> O mark the key region to study!

Example: DECAF shows plasma parameters of VDE event can occur far from those of DIS event

□ Largest portion of detected VDE events appear at (*I*_{*i*}, *κ*) with very small portion of DIS events detected

DECAF provides an early disruption forecast - on transport timescales – giving potential for disruption avoidance

- Then, plasma has an H-L back-transition (pressure peaking warning PRP) before DIS
- Early warning gives the potential for disruption avoidance by plasma profile control

DECAF event analysis of large databases of different devices shows physical distinctions

Databases

- MAST: 8,789 shots
 (3,360 shots*seconds)
- NSTX: 10,094 shots (6,400 shot*seconds)
- Loss of vertical stability control occurs closer in time to disruption in MAST compared to NSTX
 - May be due to presence of copper stabilizing plates in NSTX

Understanding aids in DECAF extrapolation to new devices

Limited event chain analysis of large databases evolves initial performance of disruption prediction

10

9

Rapidly-expanding DECAF code provides a new paradigm for disruption prediction research

- Multi-faceted, integrated approach to disruption prediction and avoidance that meets disruption predictor requirement metrics
 - Physics-based approach yields key <u>understanding</u> of evolution toward disruptions needed for confident extrapolation of forecasting
 - Physics-based DECAF events can guide disruption avoidance by control
 - Full multi-machine databases used (<u>full</u> databases needed!)
 - Open to all methods of data analysis (physics, machine learning, etc.)

DECAF is now producing early warning disruption forecasts

On transport timescales: potential disruption avoidance by profile control

Next steps

- Expand number of DECAF events evaluated in large database analysis
- Continue / expand disruption prediction performance analysis (> ITER)
- Implement DECAF disruption prediction models in real-time (+ KSTAR) We are hiring post-doctoral researchers! + Email: sabbagh@pppl.gov

Supporting Slides Follow

Global MHD modes can also be "slow" and allow early warnings for disruptions, potentially allowing avoidance

- Rotating MHD warning level <u>decreases</u> after 0.46s → DANGEROUS for RWM onset!
- H L back transition (PRP) drags out time to disruption (> 100 ms transport timescale)

DECAF code based on initial successful research/results is now advancing to a new level

DECAF brief highlights of prior results

- First automated event chain analysis (followed deVries' manual work)
- Excellent performance on smaller, targeted databases (NSTX)
 - Ex.: DIS, WPC, IPR, LOQ, RWM events found 100%, VDE event 91%
 - Computed events accurately represented experiment (~ 10 events)
 - Physics model forecasted global MHD disruptions with ~ 85% reliability
- Disruption chains often repeated, e.g.: RWM>VDE>WPC>>IPR>DIS

J.W. Berkery, S.A. Sabbagh, R. Bell, et al., Phys. Plasmas 24 (2017) 056103

Recent progress

- Density limit model based on radiating island power balance being tested
- New MHD events in DECAF allow forecasting on transport timescales
- Linear resistive MHD analysis as first step to theory-based forecasting
- Analysis of disruption chains from general databases
- Multi-machine database analysis and disruption prediction with small number of verified events

DCON stability calculation shows high β_N equilibria are subject to n = 1 ideal instability

- **Equilibria at lower** $\beta_N \sim 2$ is consistently stable to n = 1 ideal modes in DCON
- $\label{eq:stable} \Box \quad Unlike the lower β_N case, DCON calculates unstable $n = 1$ mode with no-wall $(\beta_N > \beta_N$ no-wall)$ at the achieved high $\beta_N > 3$}$

See CP11.00100: Y.S. Park See CP11.00099: Y. Jiang

A.H. Glasser, Phys. Plasmas **23** (2016) 072505

Higher q₉₅ plasma has greater ideal n = 1 no-wall stability computed in DCON

КЭТА

- Unlike higher β_N plasma, equilibria is mostly stable to n = 1 ideal modes in DCON
 - Note generally smooth evolution of stability criterion – reached with improved kinetic equilibria
- The *q*-profile at higher B_T evolves higher *q*_{min} above 1
 - Sawteeth disappear
- Reconstructed lower q shear at higher values of q does not lead to n = 1 instability in DCON

A broad non-inductive current fraction profile leads to low shear at low q in high β_N plasma

Kinetic EFIT reconstructed again shows evolution to low-sheared q-profiles but now at high q

60th APS-DPP Mtg. (GI3.00002): Disruption Event Characterization and Forecasting in Tokamaks (S.A. Sabbagh, et al. 11/6/18)

New DECAF MHD events are now being tested on KSTAR to define evolving disruption warning level

Kinetic reconstructions focused first on KSTAR plasmas with high-non-inductive fraction; NICF exceeds 75%

TRANSP analysis of experimental plasmas

Non-inductive fraction

Beam-driven

Bootstrap

Non-inductive fraction is key for stable high beta steady state operation

See CP11.00102: J.H. Ahn

Predictive TRANSP analysis shows KSTAR design target $\beta_N \sim 5$ can be approached with $f_{NI} \sim 100\%$

Predict-first analysis used to design high-β, 100% non-inductive current fraction (NICF) experiments for present KSTAR run campaign

K 🏂 TAR

New 2nd NBI system is installed in KSTAR aims to be available for 2018 run campaign

- Geometry of 2nd NBI system is included in TRANSP model
 - 2018 : upward-slanted source
 - 2019+ : all 3 sources available

 $\rightarrow P_{NBI} \simeq 1.5 \text{MW/source}$

Predictive transport capability (TRANSP) allows "predict-first" projections for upcoming runs

Project from existing KSTAR plasmas

- Set fraction of Greenwald density and confinement factor ITER H_{98y2}
 - Neoclassical ion transport, electron transport set to match H_{98v2}
- KSTAR 1st and 2nd NBI systems are modeled (incl. aiming angles); power levels set realistically based on MSE needs, etc.

TRANSP 16325	2016 actual	2018 NBI	2019 NBI
NIC fract. (%)	71%	96%	130%
β_N	2.7	3.4	4.4
l _i	0.9	0.91	0.95
T _i (0) (keV)	4.5	5.5	7.2
T _e (0) (keV)	4.6	3.3	3.3
n _e (0) (10 ²⁰ m ⁻³)	5.2	5.6	5.5
f _{Greenwald}	0.5	0.5	0.5
H _{98y2}	1.25	1.25	1.25

Transport analysis projections allow for variations of plasma parameters to meet targets

Initial analysis of large databases further supports published result that disruptivity doesn't increase with plasma β

