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• Tokamak plasmas sensitively respond to non-axisymmetric (3D) magnetic fields
– Plasma response → magnetic perturbation, plasma displacement, perturbed plasma 

current etc.
– Linear theory: plasma response generally contributed by multiple stable MHD eigenmodes 

→ multi-mode plasma response

• Behavior of stable modes in multi-mode plasma response can significantly affect 
performance of tokamak operations e.g.
– Amplification of edge − peeling response strongly couple to edge localized modes (ELMs) 

control [Y.Q. Liu NF 2011, C. Paz-Soldan et al, PRL 2015, J.-K. Park et al, Nature Physics 2018]
– Selective amplification of core/edge dominant modes → control of plasma rotation 

through neoclassical toroidal viscosity (NTV) [W. Zhu et al, PRL 2006]
– Detect marginally stable modes → predict and control MHD instabilities (much of previous 

work based on single mode approach) [Reimerdes et al, PRL 2004]

Understanding and Identifying Each Individual Eigenmode (Stability + Mode 
Structure) in Multi-Mode Plasma Response is Important for Tokamak Operation
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!"
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arrays

LFSHFS

• Multi-mode plasma response has been qualitatively identified in DIII-D and EAST 
experiments.

Understanding and Identifying Each Individual Eigenmode (Stability + Mode 
Structure) in Multi-Mode Plasma Response is Important for Tokamak Operation

C. Paz-Soldan et al, PRL 2015
N. Logan et al, Nucl. Fusion 2018

#$ = $&' −$)*+

DIII-D n=1 plasma response

How many dominant modes contribute to 
multi-mode plasma response?

How about stability and behavior of 
dominant modes in multi-mode plasma 
response?

Multi-pole transfer function model is developed
to reveal characters of stable dominant modes. 

LFS !"

HFS !"

o Exp.

#$ = ,-. /01

#$ = ,,. /01

Multi-mode
response
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Multi-Pole Response Transfer Function is Developed to Extract 
Stable MHD Eigenmodes from Plasma Response

!"
Sensor 
arrays

LFSHFS

LFS !"

HFS !"

o Exp.

#$ = $&' −$)*+

DIII-D n=1 plasma response

Multi-mode
response

#$ = ,-. /01

#$ = ,,. /01

Multi-pole transfer function on 3D magnetic sensor measurement is systematically developed from 
generalized linear-MHD equation:

23 4, Δ7 = 89
:;<

==
>?@
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3 + D>

3EF>GH(:JKL/:;<)
O2Q4 − R>

+ S3 + T3EF>GH :JKL/:;<

Represent dominant eigenmodes

Eigenvalue of iVℎ mode 
Same at any sensor
Re(R) stability index
Im(R) mode frequency

Coupling between coil 
and mode at XVℎ sensor

Residual of vacuum 
response when |4| → ∞

4: coil frequency
Δ7=7JKL − 7;<

Measured response 
at XVℎ 3D sensor

• Combined 3D MHD spectroscopy uses 3D coils 
to perform active detection (scan \ and #$) to 
extract transfer function and stable eigenmodes

– Conventional passive spectroscopy detects 
unstable mode
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Multi-Pole Response Transfer Function Extracted from Experimental 
Data Reveals Three Dominant n=1 Modes in DIII-D Experiments

n=1 Transfer function extracted in DIII-D experiment

Multi-pole transfer function at 3D sensor is extracted in DIII-D experiments (Shot No. 170195-170220):

!",!$
Sensor 
arrays

LFSHFS

%& = – 85.32 – 23.12i rad/s	

2nd mode 1st mode

3rd mode

LFS !"

HFS !"

o Exp.

Vacuum

P(56, 7 = −&:Hz)

=> ?, ΔA =
BC
> + EC

>FGHIJ

K2L? − %&
+

BM
> + EM

>FGHIJ

K2L? − %N
+

BO
> + EO

>FGHIJ

K2L? − %P
+ Q> + R>FGHIJ STUV/SWX , ΔA=ATUV − AWX,

STUV
SWX

= 1

%P = −NYY. YN − &Z&. PP[ rad/s%N = −&\\. \P − ]^. ^N[ rad/s

• Plasma MHD stability can be quantified
by eigenvalue of least stable mode,
Re(%&)

• For any (7, 56), multi-pole transfer
function reveals contribution of each 
dominant mode at different poloidal
locations of 3D sensors
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Multi-Mode Response Analysis for EAST Experiments Identifies Two 
Dominant n=1 Contributions

Experimental transfer function indicates two dominant eigenmodes in EAST experiment (shot No. 70617-70633):

!" = – 66.65 +0.06i rad/s	

01 2, Δ5 =
78
1 + 98

1:;<=>

?2A2 − !"
+

7C
1 + 9C

1:;<=>

?2A2 − !D
+ E1 + F1:;<=> GHIJ/GKL , Δ5=5HIJ − 5KL,

GHIJ
GKL

= 1

ND = −O"P. QR − "ST. "OU rad/s

n=1 Transfer function extracted in EAST experiment

2nd mode

1st mode

P(VW, X = "SHz)

A
m

p
[\

]/
^ _
`(
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cd

)
A

m
p
[\

`/
^ _
`(
b/
cd

)

LFS \`

LFS \]

Upper coil

Lower coil

o Exp.

Advantage of e VW, X to extract stable MHD 
modes:

• Inclusion of phase dependence

– Reduce requirement of noisy high frequency 
scan in conventional Nyquist method [Reimerdes
et al, PRL 2004]

– Better chance to observe significant eigenmode 
response

• Extract transfer functions from multiple 
locations of 3D sensors simultaneously

– Strong constrains on eigenvalue f< and 
compensate for potential measurement errors

– Observe more aspects of eigenmode

Vacuum
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• Theory of multi-mode plasma response model

• Detection of n=1 modes in stable DIII-D plasma

• Multi-mode plasma response model helps to understand n=2 
mode locking in L-mode DIII-D plasma

Outline
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• Theory of multi-mode plasma response model

• Detection of n=1 modes in stable DIII-D plasma

• Multi-mode plasma response model helps to understand n=2 
mode locking in L-mode DIII-D plasma

Outline
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Multi-Mode Plasma Response Model is Systematically
Derived From Generic Linear MHD Formulation

!"×$ = !$
&,⋯ , !)

&,⋯ , !*
& +

Discretization of computation domain
!$
& !)

& !*
&

⋯

,- ,. ,/⋯ ⋯

⋯

! (1, 2) = 5⃗ (,, 6),7 (,, 6),8⃗(,, 6)
9

Only in plasma domain

Discretize , direction

Fourier transformation 
of 6 (poloidal direction)

!)
& = :.

;,7.;,<.;
9

=5⃗ = −inΩ5⃗ + 7 + 5⃗ ⋅ DΩ RFDϕ

=8⃗ = −inΩ8⃗ + D× 7×HI + D×8⃗ ⋅ DΩ RFDϕ − D×(JD×8⃗)

=7 = −inΩ7 − ρL-D ⋅ [: ⋅ DPI⃡P + Q∥8⃗8⃗ + QS(⃡P − 8⃗8⃗)] + ρ
L-(D×8⃗)×HI + ρ

L-U⃗I×8⃗ + 2ΩWX×7 − 7 ⋅ DΩ RFYϕ − ρL-D ⋅ ρ5⃗ ΩWX×ZI

Linearized MHD equations including non-ideal effects

Kinetic pressure [∥ and [S

Q∥\
L.]^_.`a =b

c,.

deΓgh∥
Fi/

- QS\
L.]^_.`a =b

c,.

deΓ
1

2
ghS

Fi/
-

k/km → o eigenvalue

Resistive term

Y.Q. Liu et al, PoP 2008

D×8⃗ = 0 D ⋅ 8⃗ = 0

Resistive wall Vacuum

q(1, 2, r) = qs(1)tom_)s2_)ur

Any perturbations have form

v- = 8⃗ ⋅ D, , Δ ~ wall jump

=vx =
e

yz
D, Δ

{vx

{,
− Δv|

D,

{6
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Multi-Mode Plasma Response Model is Systematically
Derived From Generic Linear MHD Formulation

Matrix form of equations
(&×$ = ($),⋯ , (,),⋯ , (-)

. /: 1×1 full rank matrix

23( = /(

4
3

5
3

5

(6
(73

(8
(733

=
9: 9:3
93: 93 93;

9;3 9;
933;

9;33
933

(6
(73
(8
(733

wall

plasma
vacuum

vacuum

<=>? = @<=A?

Vacuum transformation
between two surfaces

3D Coil equations and inhomogeneous plasma response equations
23( = B!BC$( coil frequency

# = ,D = ,EFG
B(IJ3 − !)BC$( = MNOIQ6R,SNO + MUVWIUVWR,SUVWUpper and lower coils

M&×$
NO IQ6R,SNO ,  M&×$UVW IUVWR,SUVW

( = BC$ IJ3 − ! C$B(MNOIQ6R,SNO + MUVWIXY8R,SUVW)

/ = B!BC$
Eigenvalue matrix

Reduce 
vacuum equations

Z×\⃗ = ȷ⃗^_`a Z ⋅ ȷ⃗^_`a = 0

IJ3 − ! C$=

$
,dC#$

⋱
$

,dC#& &×&
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Multi-Mode Plasma Response Model is Systematically
Derived From Generic Linear MHD Formulation
!"×$ = & '() − + ,$&,$(./0I23456/0 + .89:I89:45689:)

<= = >$ + 5(>? @A: sensor surface 

BC ΔE, G =
<=
HIJ

=K
LMN

O
PL
C + QL

CR,LST(HUVW/HIJ)
'2ZG − [L

+ \C + ]CR,LST HUVW/HIJ , ΔE=EUVW − EIJ

Sensor transfer function including coil frequency ( = 2ZG and phasing ΔE :

^"×",$ : inverse Fourier transformation

_$×": sensor measurement

<= = (_^,$`)$×"

a$
5b,c$

⋱
a"

5b,c"

+ (_^,$)$×"
e$

⋱
e"

fN
IJ

⋮
fO
IJ

O×N

HIJRLThi +
fNUVW
⋮

fOUVW O×N

HIJRLThi

<= = (j '() − + ,$ + k)(&,$./0I23456/0 + &,$.89:I89:45689:)

Example of lm = (n$ + opn?)!

Wall equation:  q lmqr ,s = ?optulmq

lmv~lmqr~oplmq
Plasma mode - Coil coupling

Vacuum-Coil coupling p → ∞

Mode-Coil coupling

mode eigenvalue
(same for each sensor)

Residual of vacuum response 
when z → ∞
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!",!$
Sensor 
arrays

Proof of Principle Based on Simulated Response Data: Constructed Transfer
Function Using Low-Frequency Data Recovers High-Frequency Data

LFS Bp

• MARS-F solves linearized ideal 
MHD for plasma response and 
eigenvalue problem

• MARS-F simulates n=1 DIII-D 
plasma response by scanning  

Δ& = [0deg,	60deg,	120deg,	180deg,	240deg,	
300deg	]

5=	[-110Hz,	-60Hz,	-30Hz,	-10Hz,	10Hz,	30Hz,	
60Hz,	110Hz]

• Transfer function fits MARS-F 
simulated data points well

• P(:;, <) agrees with Nyquist plot
which is simulated by MARS-F by
scanning frequency up to >?@Hz  

Real (δBF/IIJ) (a.u.) 

Im
ag

(δ
B F
/I
IJ

) (
a.

u.
) 

O MARS-F simulation
X Fitting points
− Transfer function

P(M; = NO?PQR, <)

Im
ag

(δ
B J
/I
IJ

) (
a.

u.
) 

P(M; = NO?PQR, <)

Real (δBJ/IIJ) (a.u.) 

MARS-F simulation of n=1 DIII-D plasma response
S? = >. ?U, SV@ = U. ?W, XY = >. ZU

HFS Br
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!" Δ$, & =
()
*+,

=-
./0

1 2.
" + 4.

"56.78(*:;</*+,)
?2A& − C.

+ D" + E"56.78 *:;</*+, , Δ$=$:;< − $+,

Multi-pole transfer function on 3D sensors is developed from generalized linear-MHD theory:

Detailed comparison 
between experiment and 
numerical modelling.

Experimental 
measurements !" Δ$, &

Eigenmode	
behavior	at	3D	

sensors

!" Δ$, &

Eigenvalue 
problem solver

Full solution of 
dominant eigenmode 

Eigenvalues	(C.)
stability	index

Selective	
amplification	of	
eigenmode

Difficult

Easy

Multi-Pole Transfer Functions can be obtained from both  Experimental and 
Numerical Data

Plasma 
response 
simulation

Simulation
(e.g. MARS code)
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• Theory of multi-mode plasma response model

• Detection of n=1 modes in stable DIII-D plasma

• Multi-mode plasma response model helps to understand n=2 
mode locking in L-mode DIII-D plasma

Outline
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Coil !"#(kA)

MID-LFS
$%& (G)

Combined 3D MHD Spectroscopy: Scanning both Coil Phasing and
Frequency to Extract Multi-Pole Transfer Function from DIII-D Experiments
• Keep equilibrium parameters stable with little

change.

• Repeat same discharge and scan coil phasing
and frequency to measure n=1 plasma response.
� Change coil phasing in each discharge [170200 (0 deg), 170202

(60 deg), 170203 (120 deg), 170204 (180 deg), 170205 (240 
deg),170220 (300 deg)]

� Randomly scan coil frequency ±10 Hz, ±30 Hz, ±60 Hz and ±110 Hz
in each shot

• Frequency scan: one time interval – one
frequency with several periods

• Extracted response at 3D sensor (Mid-LFS: ,-., ,-/; Mid-HFS: ,-., ,-/ ): 

,- = 123(56789:;<:8=.)

DIII-D Shot No. 170220, ?@~B.D, EDF~G.B
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Combined 3D MHD Spectroscopy: Response Extracted by 
Simultaneous Fitting of DIII-D Data from Multiple Sensors

Multi-pole response transfer functions fit to multiple sensor measurements at Mid-HFS (!" and !#) and 
Mid-LFS (!" and !#) 

Nonlinear least square fitting is used to find $%,
&% and '% by minimizing target function:

min ∑ , -./01234
, -./01

5
, 7 -!89# = ,./01

;<1

Three stable dominant modes are extracted:
$= = – 85.32 – 23.12i rad/s	
$K =−=MM. MN − OP. PK% rad/s
$N =−KQQ. QK − =R=. NN% rad/s

Convergence test of transfer function:

• Randomly perturbing initial guess
• Increase pole number during fitting

Contribution of 4th and 5th modes is negligible

Experiment 
real (o) 
imag(◊)

Re(ST)

Im(ST)

ST ΔV, W = 7!
XY#

=Z
[\]

^ _[
T + a[

Tb2[cd(Xfgh/XY#)
2jkW − l[

+ mT + nTb2[cd Xfgh/XY#

HFSop 10Hz HFSop110Hz

LFSoq10Hz LFSoq110Hz

Qualitative index 
of MHD modes’ 
stabilities

r5=16.5
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• Transfer function can be 
extracted from MARS-F 
simulation by performing 
same phasing and frequency 
scan as experiments

• Each dominant eigenmode 
can be compared 
separately between
experiments and simulations

General behavior of each mode 
is similar between experiment and 
simulation

Construction of Transfer Functions from Both Measured and Simulated 
Response Data Allows Direct Comparison of Each Individual Mode

HFS Br

Experiment MARS-F
!" = –85.32 – 23.12i rad/s –45.18 – 2.95i rad/s

!2 =−"44. 45 − 67. 728 rad/s –101.22 – 0.75i rad/s

!5 =−2;;. ;2 − "<". 558 rad/s –365.99+ 3.39i rad/s

?(AB, D = FGH)
Experiment

MARS-F

Total
Response

2nd mode

1st mode
MARS-F

Exp.

3rd mode
MARS-F

Exp.

Exp. MARS-F
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Reconstructed Stable Poles Are Used to Guide Eigenvalue Solver 
to Directly Compute Eigenmode Structure for 3 Dominant Modes  

• Eigenvalues from simulated transfer function, as initial guess of eigenvalue problem
solved by MARS-F , help to find converged solutions.

• Different eigenmode structure has potential for different application purpose.
1st mode: core rotation control through NTV torque
3rd mode: help edge island open for ELM suppression

Core dominant Edge dominant

1st mode

R (m)

Z
(m
)

(a.u.) 2nd mode (a.u.)

R (m)

3rd mode

R (m)

(a.u.)

Divertor dominant

|"# ⋅ %|
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G/kA

Transfer Function Reconstructed From Experimental Data Helps to Perform 
Selective Amplification of Mode in 2D Space of Coil Phasing and Frequency

• Phasing and frequency dependence of each dominant eigenmode can be evaluated by transfer 
function

• 2D scan of coil frequency and phasing could help to amplify preferred eigenmode.
• Higher coil frequency makes stronger amplification of 2nd and 3rd modes in concerned DIII-D 

experiment

G/kA

Δ" Δ" Δ"

1st mode 3rd mode
#$, & dependence of mode amplitude at HFS '()

X

G/kA
2nd mode

Fr
eq

ue
nc

y 
(H

z)

*+ = – 85.32 – 23.12i rad/s	 *: = −<==. =< − +>+. ::? rad/s*< = −+@@. @: − AB. B<? rad/s
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G/kA

Transfer Function Reconstructed From Experimental Data Helps to Perform 
Selective Amplification of Mode in 2D Space of Coil Phasing and Frequency

• Phasing and frequency dependence of each dominant eigenmode can be evaluated by transfer 
function

• 2D scan of coil frequency and phasing could help to amplify preferred eigenmode.
• Higher coil frequency makes stronger amplification of 2nd and 3rd modes in concerned DIII-D 

experiment

G/kA

Δ" Δ" Δ"

1st mode 3rd mode
#$, & dependence of mode amplitude at HFS '()

X

G/kA
2nd mode

Fr
eq

ue
nc

y 
(H

z)

*+ = – 85.32 – 23.12i rad/s	 *: = −<==. =< − +>+. ::? rad/s*< = −+@@. @: − AB. B<? rad/s

Amplify 3rd mode



21 ZR Wang/APS-DPP/Nov. 2018

• Theory of multi-mode plasma response model

• Detection of n=1 modes in stable DIII-D plasma

• Multi-mode plasma response model helps to understand n=2 
mode locking in L-mode DIII-D plasma

Outline
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• Efficiency of coil phasing and frequency scan is improved by applying multiple 
frequencies simultaneously .

More Efficient MHD Spectroscopy with Multi-Frequency Wave 
Package Applied in DIII-D L-Mode for n=2 Mode Identification

!"~0.32

#$%~3.1

&'~1.4 MA

() =0 deg 

+, deg 

18, deg 

270 deg 

Mode lockingU
pp

er
C

oi
l

C
ur

re
nt Current ramp up

() = , 678

9 :
,<
=
,>

+?

LFS Bp 10Hz

Experiment 
real (o) 
imag(◊)

Re(@A)

Im(@A)

HFS Bp 110Hz

• Two dominant modes are extracted 
from experiments

173359

Wave packet for given phasing (0°, 90°, 180°, 270°) is
carefully designed by combining multiple waves (±10FG,
± 30FG, ±60FG, ±110FG). Time (s)0.4s

JK = −212.81 + 23.81Q rad/s
JR = −327.23 − 142.63Q rad/s
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n=2 Combined MHD Spectroscopy Identifies Least Stable Mode as Stable
Tearing Mode and Confirmed by MARS-F Eigenvalue Computation

!: Lundquist number
Growth rates (rad/s)

Unstable
!~#$%

!~#$&

Mode comparison between Expt. and Simulation • 1st mode computed by MARS-F similar to that 
extracted from experiment

• MARS-F eigenvalue runs scanning plasma 
resistivity è 1st mode corresponds to an 
unstable TM at high resistivity

Expt.

MARS-F

1st modef=0 Hz

LFS Br

Liu et al, PoP 2012

'(×#$*0−*(×#$*

−*
(×

#$
*
−(

×#
$*

$
(×

#$
*

M
od

e 
fr

eq
ue

nc
y

(r
ad

/s
)

2(×#$*−'(×#$*

MARS-F

Expt.

Experiment MARS-F
,- = −212.81+ 23.814 rad/s −205.46− 7.294 rad/s

,; = −327.23− 142.634 rad/s −1.66×10< − 15.024 rad/s
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Amplification of Stable Tearing Component at !"=0o è Strong 
Resonant Perturbations è Lower Mode Locking Threshold

#$
%&
' (#

(%
.+
.)

-./0

-2

1 = −1

1
−3

02

3

#$
%&
' (#

(%
.+
.)

-./0

1 = 3

4 5 6 7

1st mode

2nd mode

1st mode 2nd mode

• MARS-F solves eigenvalue problem to find eigenmode structure of two dominant 
modes
– Least stable mode is resistive eigenmode
– Secondary mode has global kink structure

• n=2 Least Stable Mode is Amplified at !"=0 Degree Coil Phasing (Even Parity) with 
Clear Tearing Structure

HFS Bp

Tearing 
Odd parity
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• Multi-mode plasma response model/plasma transfer function 
developed from linear MHD and control theory can identify:
� Spatial structure of each dominant stable mode in multi-mode 

plasma response
� Damping rates of dominant modes as quantitative index of 

plasma stability
• Extraction of stable eigenmodes, using multi-mode plasma 

response model, is validated in tokamak experiments
• Comparison between experimentally extracted multi-mode 

response and MARS-F simulations:
� Identify n=2 resistive eigenmode as least stable and amplified at

Δ"=0 deg, lead to lower mode locking threshold
• Multi-mode plasma response model is a powerful tool for

� Optimizing RMP spectrum to amplify preferred eigenmode for ELM 
suppression

� Real-time quantitative monitoring plasma stability

Thesis: Multi-Mode Plasma Response Model and Combined 3D MHD
Spectroscopy Provide Pertinent Tools to Study Stable MHD Modes

3rd mode

2nd mode

1st mode

H-mode
n=1 |$% ⋅ '|

L-mode
n=2 |$% ⋅ '|
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Backup slides
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Experimental Extracted Plasma Response Model is
Verified with Independent Experiment

• Experiment (shot No. 170196) only uses upper I-coil to scan frequency
• Transfer function, extracted from phasing and frequency scan of I-coils, shows good agreement

with sensor measurements in independent experiment
• Experiment confirms linear approach of plasma response in theory

1st mode
2nd mode

3rd mode

!(#)
HFS Br

LFS Br
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Multi-Mode Response Transfer Function Reveals Contribution of Each
Eigenmode While Applying Different Coil Frequency and Phasing

This slides maybe not shown in talk

Eigenvalue of three dominant modes:

!" = −10.96 + 1.23, Hz
!- = −112×10- − 14.93, Hz
!0 = −1.45×10- − 2.32×10-, Hz

• Contribution of each dominant
mode can be separated at any 
frequency and phasing

• 23=100 deg has least stable mode 
dominant. 43=240deg makes 2nd

and 3rd modes more important

HFS Bp

f=0Hz

LFS Bp

HFS Bp

LFS Bp

5(Δ8 = 100:;<, >) 5(Δ8 = 240:;<, >)

5(Δ8 = 240:;<, >)
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Resistive Wall Effect is Important to Determine Plasma Response
While Rotating 3D Fields are Applied.

2D wall with uniform resistivity is not 
sufficient to resolve spatial details of 
wall eddy current patterns to simulate 
local magnetic measurements.

Exp. Transfer function

Wall time ~ 9ms
~ 6.75ms

~ 5.63ms

J.M. Hanson et al, Nucl. Fusion 2016

No wall
LFS !"#

LFS !"$

HFS Br

LFS Br

• In coil frequency scan, simulated LFS !"# with different wall time decays faster than experimental 
transfer function.

• An sophisticated wall modelling is important to AC plasma response simulation.
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Well Restore Magnetic Response in Time Domain

Raw data

Band pass filter

Transfer function

Time(s)

Time(s)

HFS Br, Δ" = 240 '()
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Single Mode Response Also Leads to Different !" of
Minimum Amplitude at LFS and HFS�Toy model�

Consider two driving terms #$%&'()* +,- #./0&'(123 , response measured by sensor at 45:

65 =
[+9
:; 45 + +9

=>? 45 &'((123A()*)]DE(F)&
'()*

G9

+9
:; 45 = +9

:; 45 &'(H
)*

(IJ) +9
=>? 45 = +9

=>? 45 &'(H
123 (IJ)

|65| =
|DE(F)|

|G9|
|+9
:; 45 | + |+9

=>? 45 |&A' ()*A(123 A((H
123 IJ A(H

)* (IJ))

ΔM ΔM5NO(45)

ΔM = ΔM5NO 45 ± Q 65 R'O

45 dependence of 65 R'O even for single mode
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Single Mode Response Also Leads to Different !" of
Minimum Amplitude at LFS and HFS�Toy model�

Consider a complex linear system: #(%)' = 0 Eigen functions (span solution space): *+(,), *-(,), …, *.(,)

Response to a driving term:

Eigen values: /+, /-, …, /.

Multi-mode solution: ' , = 01(2)
31

*+ , + 05(2)
35

*- , + ⋯+ 07(2)
37

*. ,

If only one mode, single-mode solution: ' , = 01(2)
31

*+ ,

Response measured by sensor S : 8 = 9' , = :01(2)
31

*+ ,

Consider two driving terms ;<=>?@A BCD ;EFG>?HIJ, response measured by sensor 9KL: and 9ML: at mid-plane of LFS (, = 0) and HFS (, = N) respectively

8KL: = 9KL:[P+QR 0 + P+STU 0 >0(?HIJV?@A)]*X(%)>0?@A
/+

8ML: = 9ML:>0YZ[P+QR N + P+STU N >0(?HIJV?@A)]*X([)>0?@A
/+

Here, P+(,), P-(,),…, P.(,) are complex 
coupling coefficients of coil current to 
each mode.

# , ' = ;

Here, single mode is amplified by upper and lower coils respectively. It can have P+QR 0 ≠ P+STU 0 and P+QR N ≠ P+STU N .

At LFS and HFS, the coupling between mode and coil can be different, P+QR 0 ≠ P+QR N and P+STU 0 ≠ P+STU N . Therefore, P+QR 0 ≠ P+QR N ≠ P+STU 0 ≠ P+STU N . 

The minimum point is determined by ]Y0. 0 = BC^(P+QR 0 ) − BC^(P+STU 0 ) ± N and ]Y0. N = BC^(P+QR N ) − BC^(P+STU N ) ± N.

It is possible to have ]Y0. 0 ≠ ]Y0. N .

Physical understanding: single mode is amplified twice by upper and lower coils respectively. The coupling of single mode to upper and lower coils can be 
different at LFS and HFS. While changing >?HIJV?@A, the combination of two amplifications can be different at LFS (P+QR 0 + P+STU 0 >0(?HIJV?@A)) and 
HFS(P+QR N + P+STU N >0(?HIJV?@A)).

* % b*VX(%)' = 0

* % b*VX(%)' = ;


