

Application of transient CHI plasma start-up to future ST and AT devices

K. C. Hammond,¹ R. Raman,² S. C. Jardin,³ and F. Volpe⁴

¹Max Planck Institute for Plasma Physics, Greifswald, Germany
 ²University of Washington, Seattle, Washington, USA
 ³Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA
 ⁴Columbia University, New York, New York, USA

60th Annual Meeting of the APS Division of Plasma Physics Portland, Oregon, USA November 8, 2018

Motivation

- The ability to start up a tokamak plasma without a central solenoid is desirable for reactor design
- Multiple approaches pursued to date
 - Induction from poloidal field coils
 - Radio-frequency heating and current drive
 - Helicity injection (point-source, coaxial)
- Advantages of transient Coaxial Helicity Injection (CHI)
 - Successful implementation on HIT-II, NSTX, QUEST
 - Favorable scaling to larger devices

Motivation

- Plasma breakdown requirements must be carefully considered for future CHI implementations
 - Plasma must break down in a particular location in order to work
 - Weaknesses of previous designs could become show-stopping issues
- In this talk: assessment of feasibility for next-step devices
 - Review of transient CHI start-up
 - Development model to predict CHI breakdown feasibility and location
 - Modeling of breakdown in two previously-successful configurations
 - Projections for attainable plasma parameters in larger devices

Outline

- Review of transient CHI start-up
- Model to predict CHI breakdown feasibility and location
- Assessment of different CHI electrode concepts
- Predictions for CHI in next-step devices

Transient CHI converts a brief DC plasma discharge to a toroidal plasma with closed flux surfaces

- Hardware requirements
 - Two axisymmetric electrodes
 - Toroidal field + poloidal flux between electrodes
 - Sufficient prefill gas for breakdown
- Plasma development
 - Current flows between electrodes along field lines
 - J × B forces expand plasma into vessel
 - Reconnection leads to closed flux surfaces
 - Fast reduction of injector current enables efficient conversion of injector flux to poloidal flux

Raman et al., Phys. Plasmas 2011

Key parameters for CHI

- Injector current I_{inj} must meet bubble-burst condition for plasma to expand from injector to main vessel
- Toroidal current generation is proportional to the ratio of toroidal flux ψ_{tor} to injector flux ψ_{inj}
- Capacity to generate plasma current *I*_p is proportional to ψ_{inj}

 $I_{\rm inj} \ge \frac{2\psi_{\rm inj}^2}{\mu_0^2 d^2 I_{\rm TF}}$

$$I_{\rm p} = \frac{2\psi_{\rm pol}}{\mu_0 R_{\rm maj} l_i} \quad \psi_{\rm pol} \le \psi_{\rm inj}$$

Jarboe, Fusion Technol. 1989

Milestones for transient CHI

- HIT-II: closed flux surfaces and persistent *I*_p of 100 kA (Raman et al., *PRL* 2003)
- NSTX: 160 kA $I_p = 60 \times I_{inj}$ (Raman et al., *PRL* 2006)
- NSTX: Handoff to Ohmic heating with inductive flux savings (Raman et al., PoP 2011)
- NIMROD: confirms interpretation of flux surface formation (Ebrahimi et al., *PRL* 2015; *Nucl. Fusion* 2016)
- QUEST: startup with localized single divertor toroidal electrode (Kuroda et al., *PPCF* 2018)
- Pegasus (URANIA): double-biased toroidal divertor electrode

Outline

- Review of transient CHI start-up
- Model to predict CHI breakdown feasibility and location
- Assessment of different CHI electrode concepts
- Predictions for CHI in next-step devices

Assessment of CHI breakdown applies the Townsend avalanche theory on a flux-tube-resolved basis in the tokamak cross-section

- Townsend avalanche theory
 - Key parameters: gas pressure p, electric field E, connection length L_c
 - Predictions: minimum *E* for breakdown, time τ_{bd} to break down (Lloyd et al., *Nucl. Fusion* 1991)
- Spatially-resolved analysis of the tokamak cross-section
 - Properties of each flux tube are considered independently
 - DIII-D: breakdown occurs closer to location of maximum flux-tube electric potential than to the poloidal field null (Lazarus et al., Nucl. Fusion 1998)
- Combined approach: apply avalanche theory to each flux tube
 - Should indicate where breakdown can occur and is most likely to occur
 - Helpful for Ohmic discharges; crucial for CHI

Flux-tube-resolved calculation successfully predicts breakdown location for Ohmic discharges in NSTX

 Plasma should form in flux tubes with greatest relative electric field, E_{mean}/E_{min}

$$E_{\text{mean}}(r,z) = \frac{1}{L_c(r,z)} \int_{\mathbf{s}(r,z)} \frac{V_{\text{loop}}(s)}{2\pi R(s)} ds$$
$$E_{\text{min}}(r,z) = \frac{Ap}{\ln [BL_c(r,z)p]}$$

• *E_{mean}*, *E_{min}* parametrized by *r*, *z* in poloidal crosssection

NSTX-U

$E_{\text{mean}}(r,z)$ can be used to predict the time required for breakdown

- Model avalanche by balancing $\frac{\partial n_e}{\partial t} = \frac{n_e}{\tau_{ion}}$
- Time to reach $au_{\rm bd} = \frac{\ln (n_{\rm bd}/n_{\rm e0})}{\eta (E_{\rm mean}/p)(\alpha 1/L_c)}$

60th APS-DPP Annual Meeting, Application of transient CHI to future ST and AT devices, K. C. Hammond et al., 11/8/2018

10

9

6

5

 τ_{bd} , model prediction

 n_e

 $\tau_{\rm loss}$

- E_{mean} arises from electrode bias rather than loop voltage: $E_{\text{mean}}(r, z) = \frac{V_{\text{inj}}}{L_c(r, z)}$
- Difficult to model experiments precisely
 - Breakdown occurs immediately after release of gas to injector - Distribution of gas p(r,z) is non-uniform and time-varying
- Can still estimate requirements for CHI breakdown in future devices:
 - At what pressure can breakdown occur? $p_{\min} = \frac{1}{AL_{\odot}}$
 - What plasma temperatures are attainable with the amount of gas used?

Outline

- Review of transient CHI start-up
- Model to predict CHI breakdown feasibility and location
- Assessment of different CHI electrode concepts
- Predictions for CHI in next-step devices

Electrode concepts will use the geometry of a ST-FNSF

60th APS-DPP Annual Meeting, Application of transient CHI to future ST and AT devices, K. C. Hammond et al., 11/8/2018

NSTX-like electrode concept is vulnerable to parasitic breakdown in main vessel

- Breakdown is intended to occur in the divertor area
- Longer connection lengths in main vessel could permit breakdown at $p \sim 10^{-7}$ torr, where as $p_{\rm min} > 10^{-4}$ -10⁻⁵ torr in injector
- Breakdown in main vessel would prevent efficient injection of current and flux

This effect was observed sometimes in NSTX, but NSTX was less vulnerable

- Similar effect is predicted if sufficient gas fills vessel
- This was observed in some cases where breakdown failed in lower divertor

Hammond et al., Nucl. Fusion 2018

• Occurrences were rare due to higher p_{\min} in main vessel

60th APS-DPP Annual Meeting, Application of transient CHI to future ST and AT devices, K. C. Hammond et al., 11/8/2018

Localizing the biased electrode to the lower target eliminates this risk

- In the "DIII-D-like" concept, breakdown is restricted to the lower divertor area
- Minimum pressure still relatively low with comparable injector flux smaller devices

Outline

- Review of transient CHI start-up
- Model to predict CHI breakdown feasibility and location
- Assessment of different CHI electrode concepts
- Predictions for CHI in next-step devices

Configuration comparison

- Injector flux will be much higher than previously used
 - Permissible due to higher toroidal fields
 - More injector flux will permit attainment of higher closed-flux currents (I_p)

$$I_p = \frac{2\psi_{\rm pol}}{\mu_0 R_{\rm maj} l_i} \qquad \psi_{\rm pol} \approx 0.7\psi_{\rm inj} \qquad l_i \approx 0.6$$

- More poloidal flux means more stored energy for Ohmic self-heating

$$P_{\rm self} = \frac{\Delta \psi_{\rm p}}{\Delta t} I_{\rm p}$$

Quantity	ST, <i>B</i> ₀ = 3 T	ST, <i>B</i> ₀ = 6 T	AT, $B_0 = 6 \text{ T}$	AT, <i>B</i> ₀ = 9 T
R_{maj}	1.7 m	1.7 m	2.4 m	2.4 m
$oldsymbol{\psi}_{inj}$	1.0 Wb	1.0 Wb	1.0 Wb	1.0 Wb

Quantity	ST, <i>B</i> ₀ = 3 T	ST, <i>B</i> ₀ = 6 T	AT, $B_0 = 6 \text{ T}$	AT, <i>B</i> ₀ = 9 T
R _{maj}	1.7 m	1.7 m	2.4 m	2.4 m
$oldsymbol{\psi}_{inj}$	1.0 Wb	1.0 Wb	1.0 Wb	1.0 Wb
l _{inj}	310 kA	160 kA	110 kA	73 kA
PF coil current	780 kA turns	780 kA turns	610 kA turns	610 kA turns
V _{min}	310 V	310 V	310 V	310 V
$p(V_{\min})$	4.0 × 10 ⁻³ torr	2.0 × 10 ⁻³ torr	1.5 × 10 ⁻³ torr	1.0 × 10 ⁻³ torr

Quantity	ST, <i>B</i> ₀ = 3 T	ST, <i>B</i> ₀ = 6 T	AT, $B_0 = 6 \text{ T}$	AT, <i>B</i> ₀ = 9 T
R _{maj}	1.7 m	1.7 m	2.4 m	2.4 m
$oldsymbol{\psi}_{inj}$	1.0 Wb	1.0 Wb	1.0 Wb	1.0 Wb
l _{inj}	310 kA	160 kA	110 kA	73 kA
PF coil current	780 kA turns	780 kA turns	610 kA turns	610 kA turns
V _{min}	310 V	310 V	310 V	310 V
$p(V_{\min})$	4.0 × 10 ⁻³ torr	2.0 × 10 ⁻³ torr	1.5 × 10 ⁻³ torr	1.0 × 10 ⁻³ torr
l _p	1.1 MA	1.1 MA	0.77 MA	0.77 MA
n _{plasma}	6 × 10 ¹⁸ m ⁻³	3 × 10 ¹⁸ m ⁻³	2 × 10 ¹⁸ m ⁻³	1 × 10 ¹⁸ m ⁻³

Quantity	ST, <i>B</i> ₀ = 3 T	ST, <i>B</i> ₀ = 6 T	AT, $B_0 = 6 \text{ T}$	AT, <i>B</i> ₀ = 9 T
R _{maj}	1.7 m	1.7 m	2.4 m	2.4 m
$oldsymbol{\psi}_{inj}$	1.0 Wb	1.0 Wb	1.0 Wb	1.0 Wb
/ _{inj}	310 kA	160 kA	110 kA	73 kA
PF coil current	780 kA turns	780 kA turns	610 kA turns	610 kA turns
V _{min}	310 V	310 V	310 V	310 V
$p(V_{\min})$	4.0 × 10 ⁻³ torr	2.0 × 10 ⁻³ torr	1.5 × 10 ⁻³ torr	1.0 × 10 ⁻³ torr
l _p	1.1 MA	1.1 MA	0.77 MA	0.77 MA
n _{plasma}	6 × 10 ¹⁸ m⁻³	3 × 10 ¹⁸ m ⁻³	2 × 10 ¹⁸ m ⁻³	1 × 10 ¹⁸ m ⁻³
P _{self}	4 MW	4 MW	3 MW	3 MW
$n_{\rm co}$ for ECRH	9 × 10 ¹⁹ m ⁻³	35 × 10¹ ⁹ m⁻³	35 × 10 ¹⁹ m ⁻³	78 × 10 ¹⁹ m ⁻³

NSTX-U

Simulations with TSC support expectations of higher current, selfheating power, and temperatures with increased injector flux

- Tokamak Simulation Code (TSC)
 - Time-dependent, free-boundary equilibrium and transport solver
 - Solves MHD/Maxwell's equations coupled to transport and Ohm's law
- Initial study: NSTX config. with increasing levels of injector flux:
 - 52 mWb (typical NSTX experiment), 104 mWb, and 208 mWb
- Supports main predicted trends
 - $-I_p$ increases in proportion with ψ_{ini}
 - Heating power, T_e increase faster

NSTX-U

Conclusions

- Requirements for attaining plasma breakdown must be considered for future CHI implementations
 - Breakdown modeling must be spatially resolved
 - A simple model for assessing these requirements has been developed, which applies the Townsend avalanche theory to each flux tube
- CHI systems in future reactors should avoid large electrodes and instead use toroidal rings localized to the divertor
- Next-step devices will be able to use much more injector flux, permitting MA-level plasma currents and higher temperatures

Upcoming CHI experiments in QUEST and URANIA will test concepts to be implemented in fusion reactors

- Localized toroidal electrodes
 - QUEST: single biased electrode
 - URANIA: dual biased electrode
- Low-field side injection
- Coupling to ECRH heating

Kuroda et al., *Plasma Fusion Res. Rapid Comm.* 2017

URANIA (currently Pegasus)

Application of transient CHI plasma start-up to future ST and AT devices

K. C. Hammond,¹ R. Raman,² S. C. Jardin,³ and F. Volpe⁴

¹Max Planck Institute for Plasma Physics, Greifswald, Germany
 ²University of Washington, Seattle, Washington, USA
 ³Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA
 ⁴Columbia University, New York, New York, USA

60th Annual Meeting of the APS Division of Plasma Physics Portland, Oregon, USA November 8, 2018

Supplement: assumptions about the effective secondary electron emission coefficient for CHI breakdown calculations

• E_{min} for tokamaks is a special case of Paschen's Law with secondary electron coefficient $\gamma = 0.58$

- Measurements for parallel plates indicate $\gamma = 0.05$ for D₂
- Larger value may be valid in main vessel where L_c is large and particle paths make many revolutions
- In the injector gap, less "enhancement" of γ is expected

 $-\gamma = 0.01$ assumed for injector region (pessimistic for our purposes)

Supplement: spatially-resolved calculation assisted interpretation of breakdown in DIII-D

- Breakdown location found to not coincide with poloidal field null
- Better agreement found with maxima in electric field integrated along flux tubes

1.0

0.5

Supplement: NIMROD simulations with high ψ_{inj} show peak current generation over 1 MA

- Simulations performed assuming $\psi_{inj} = 0.35 \text{ mWb}, B_0 = 4 \text{ T}$
- T_e limited to 15 eV but will be increased to 100 eV in the future

Ebrahimi, Nucl. Fusion 2016

Supplement: additional values from the parameter comparison table

Quantity	Dimension	 ST34	ST64	AT64	AT94
r_axis aspect	m 	 1.70 1.70	1.70 1.70	2.40 2.40	2.40 2.40 2.40
max pf curr	kA	782.42	782.42	610.21	610.21
inj_flux	mWb	1000.00	1000.00	1000.00	1000.00
tor_flux	Wb	30.08	60.17	55.67	83.50
gamma		0.01	0.01	0.01	0.01
pAtVmin	10^{-5} torr	397.33	204.85	148.34	99.17
vMin	V	307.48	307.48	307.48	307.48
bubbleCurr	kA	310.42	155.21	109.94	73.29
currMultFac		30.08	60.17	55.67	83.50
I_p	MA	1.09	1.09	0.77	0.77
pol_flux	mWb	700.00	700.00	700.00	700.00
vol_ratio		22.50	22.50	25.75	25.75
P_self	MW	3.82	3.82	2.71	2.71
n_plasma	10^{17} m^{-3}	56.74	29.25	18.51	12.37
n_01	10^{17} m^{-3}	873.68	3494.46	3494.24	7861.98
n_x2	10^{17} m^{-3}	1747.36	6988.92	6988.47	15723.95
fec1	GHz	83.87	167.72	167.72	251.58
fec2	GHz	167.73	335.45	335.44	503.16

NSTX-U

Supplement: CHI configuration on QUEST is developing ST-FNSF relevant single-biased electrode design

Kuroda et al.

Supplement: Transient CHI start-up on QUEST

Kuroda et al., Plasma Phys. Control. Fusion 2018

NSTX-U

60th APS-DPP Annual Meeting, Application of transient CHI to future ST and AT devices, K. C. Hammond et al., 11/8/2018

Supplement: CHI research on PEGASUS plans to develop a double-biased electrode configuration to better define current path

Goals on Pegasus:

-High I_p ~300 kA (@ PF coil limits for I_p)
-Flux footprint width characterization
-Role of impurities
-Influence of current channel shape on reconnection
-Dynamo current drive enhancement
-ECH heating

Collaboration with Univ. of Wisconsin: J. Reusch, R. Fonck, M. Bongard

Supplement: implementation of a ring electrode in a ST-FNSF

- Ring electrode is placed on top of the upper blanket section
 - Insulator plate isolates electrode from blanket
 - Injector flux connects upper portion of the vessel to the electrode plate on the upper portion of the blanket assembly
 - Electrode is largely shielded from direct neutron streaming

NSTX-U

Raman et al., Fusion Sci. Technol. 2015

Supplement: Tokamak Simulating Code (TSC) simulations can help understand CHI scaling with machine size

- Time-dependent, free-boundary, predictive equilibrium and transport
- Solves MHD/Maxwell's equations coupled to transport and Ohm's law
- Requires as input:
 - Device hardware geometry
 - Coil electrical characteristics
 - Assumptions concerning discharge characteristics
- Models evolutions of free-boundary axisymmetric toroidal plasma on the resistive and energy confinement time scales
- NSTX vacuum vessel is modeled as a metallic structure with poloidal breaks
 - An electric potential is applied across the break to generate a desired injector current

Supplement: further details on new TSC work

NSTX-U

- Time-dependent, free-boundary, predictive equilibrium and transport
- Solves MHD/Maxwell's equations coupled to transport and Ohm's law
- Transient CHI discharge initiated with injector flux values of 52, 104 and 208mWb ($B_T = 1T$)
 - At the end of the CHI phase, injector current is reduced to zero
 - Transport equations solved to calculate input power & heating
 - Plasma allowed to decay without any additional external heating sources
 - Transport parameters maintained same for all cases
- Simulations show an initial low normalized inductance plasma, consistent with current being driven in the edge by the CHI process
 - Inductance increases as current diffuses radially in
 - Transient CHI naturally produces a low initial inductance discharge needed for high-performance ST and AT discharges (we may want to remove this frame and associated text – to not spend too much time on this – think about it)
- The Ohmic input power increases with increasing injector flux
- Electron temperatures for the 208 mWb cases increases to over 500eV on its own
 - 1 Wb plasmas may heat to the 1keV level on their own? (can delete sub bullets)
 - Requires experimental verification

Supplement: required experimental developments

- Experiments in QUEST and URANIA will test CHI with relevant properties:
 - Localized toroidal electrodes
 - Injection from the low-field side
 - Coupling to ECRH heating

Parameters	HIT-II	NSTX	QUEST	URANIA (to be finalized)
Major radius [m]	0.3	0.86	0.68	0.45
Minor radius [m]	0.2	0.66	0.4	~0.3
Β _T [T]	0.5	0.55	0.25-0.5	0.15-0.6
Injector flux (mWb)	16	50	28	~60
Projected Start-up current (kA)	100	200	<150	~300