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Motivation

* The abillity to start up a tokamak plasma without a central
solenoid is desirable for reactor design

* Multiple approaches pursued to date
— Induction from poloidal field coils
— Radio-frequency heating and current drive
— Helicity injection (point-source, coaxial)
« Advantages of transient Coaxial Helicity Injection (CHI)

— Successful implementation on HIT-II, NSTX, QUEST
— Favorable scaling to larger devices
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Motivation

* Plasma breakdown requirements must be carefully considered
for future CHI implementations
— Plasma must break down in a particular location in order to work
— Weaknesses of previous designs could become show-stopping issues

* In this talk: assessment of feasibility for next-step devices
— Review of transient CHI start-up
— Development model to predict CHI breakdown feasibility and location
— Modeling of breakdown in two previously-successful configurations
— Projections for attainable plasma parameters in larger devices
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Outline

» Review of transient CHI start-up
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Transient CHI converts a brief DC plasma discharge to a toroidal
_plasma with closed flux surfaces

Absorber

Insulating gap
Center stack

Outer
‘bol XBtor vessel

region

 Hardware requirements
— Two axisymmetric electrodes
— Toroidal field + poloidal flux between electrodes
— Sufficient prefill gas for breakdown

* Plasma development
— Current flows between electrodes along field lines s +50mF
— J x B forces expand plasma into vessel -
— Reconnection leads to closed flux surfaces Y
— Fast reduction of injector current enables U

efficient conversion of injector flux to
pOIOidaI ﬂUX Raman et al., Phys. Plasmas 2011
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Key parameters for CHI

* Injector current /; must meet Y2 .
bubble-burst condition for plasma to Linj > — d;}”
expand from injector to main vessel Ho@~LTF

 Toroidal current generation is Dior
proportional to the ratio of toroidal Iy < Linj——
flux y,,, to injector flux g, Y

« Capacity to generate plasma 256

pacity to generate p Iy = —ol g <

current /; is proportional to ;,; “P Rinajli

Jarboe, Fusion Technol. 1989
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Milestones for transient CHI

HIT-1I: closed flux surfaces and persistent /; of 100 kA

(Raman et al., PRL 2003)

NSTX: 160 kA/ = 60 X [._. (Raman et al., PRL 2006)

inj

NSTX: Handoff to Ohmic heating with inductive flux savings

(Raman et al., PoP 2011)

NIMROD: confirms interpretation of flux surface formation
(Ebrahimi et al., PRL 2015; Nucl. Fusion 2016)

QUEST: startup with localized single divertor toroidal
electrode (kuroda et al., PPCF 2018)

Pegasus (URANIA): double-biased toroidal divertor electrode

@NSTX-U 60th APS-DPP Annual Meeting, Application of transient CHI to future ST and AT devices, K. C. Hammond et al., 11/8/2018



Outline

« Model to predict CHI breakdown feasibility and location
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Assessment of CHI breakdown applies the Townsend avalanche
theory on a flux-tube-resolved basis in the tokamak cross-section

* Townsend avalanche theory
— Key parameters: gas pressure p, electric field E, connection length L,

— Predictions: minimum E for breakdown, time 1,4 to break down
(Lloyd et al., Nucl. Fusion 1991)

« Spatially-resolved analysis of the tokamak cross-section
— Properties of each flux tube are considered independently
— DIII-D: breakdown occurs closer to location of maximum flux-tube electric
potential than to the poloidal field null (Lazarus et al., Nuci. Fusion 1998)
« Combined approach: apply avalanche theory to each flux tube
— Should indicate where breakdown can occur and is most likely to occur
— Helpful for Ohmic discharges; crucial for CHI
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Flux-tube-resolved calculation successfully predicts breakdown

location for Ohmic discharges in NSTX
? Fast-camera image

Calculation

 Plasma should form in
flux tubes with greatest
relative electric field, 1

Emean/ Emin
1 Vioo (3) =
Erean (T, — L d £
0= T3 fo 2B £
Ap
Emin (7‘, Z) —
In[BLe(r, 2)p] r
 E ... E.j, parametrized
by r, z in poloidal cross- ,
SeCt|0n 0 0> R (ml) 1'SHammond et al., Nucl. Fusion 2018
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E...an(,Z) can be used to predict the time required for breakdown
2
* Model avalanche by balancing dn. _ n.  n.
lonizations with end losses: Ot Tion  Tioss
» Time toreach In (npa/neo) 1
. . . bd —
50% ionization: 1(Emean/p) (e —1/Lec)
» Predicted r,, agrees well with £
experiment: _ '
o 08f
< |
g 0.6:' -1
é 04}
0)cs().2—-
AT
% 20 05 1 15

Time (ms) R (m)
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Adapting the model to CHI discharges

- E

nean arises from electrode bias rather than loop voltage:
Frean(r, 2) = Vin
mean\/ — LC(’I“, Z)

« Difficult to model experiments precisely
— Breakdown occurs immediately after release of gas to injector
— Distribution of gas p(r,z) is non-uniform and time-varying

« Can still estimate requirements for CHI breakdown
in future devices: .

— At what pressure can breakdown occur? Pmin = 7.
— What plasma temperatures are attainable with the amount of gas used?
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Outline

» Assessment of different CHI electrode concepts
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Electrode concepts will use the geometry of a ST-FNSF

External support — mEn - e .
structure - T
o o
Felt metal
sliding joint S/C PF colle - Tl\:;allo-l o " :l\:l/:ag)il o
housed in vacuum 1
enclosures ——Electrode ——Electrode
O O
Super-X - T IS =k | | R - o4 Horizontal
divertor .
popirini ports sized for
y NB system
VV located u -
Copper TF within the TF
magnet system boundary - -
O O
Contoured [ Embedded Bitter u u
blanket / shield w. Plate PF coils
system -, B S g gm N [ | S gpgm ©
« Two concepts for CHI electrodes:
— “NSTX-like”: entire outer wall is biased
Brown, Menard, et al. “DIIl-D-like”: : : : :
v TR ’ — -D-like™: axial ring in lower divertor
Fusion Sci. Technol. 2015 g
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NSTX-like electrode concept is vulnerable to K
_parasitic breakdown in main vessel | 104
» Breakdown is intended to occur in the
divertor area | 05
* Longer connection lengths in main vessel =
could permit breakdown at p ~ 107 torr, £
where as p,... > 104-10 torr in injector 10° 2
* Breakdown in main vessel would prevent
efficient injection of current and flux 107
108

R (m)
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This effect was observed sometimes in NSTX,
. but NSTX was less vulnerable

« Similar effect is predicted if
sufficient gas fills vessel

 This was observed in some
cases where breakdown .
failed in lower divertor

(c) 6.420 ms

b (ms)

T,

(d) 6.553 ms (e) 6.686 ms

(f) 6.886 ms

C

0.13
0 0.5 | 1.5

Hammond et al., Nucl. Fusion 2018

* Occurrences were rare due to higher p_,;, in main vessel
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Localizing the biased electrode to the lower !
target eliminates this risk

* In the “DIlI-D-like” concept, breakdown is
restricted to the lower divertor area

* Minimum pressure still relatively low with |
comparable injector flux smaller devices

0

Z (m)

1
(3]

-4

| )

R (n;)

(1 O'5 torr)
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Outline

 Predictions for CHI in next-step devices
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Configuration comparison

* Injector flux will be much higher than previously used
— Permissible due to higher toroidal fields

— More injector flux will permit attainment of higher closed-flux currents (/)
2wpol

Ip — ,uOR ] wpol ~ O’Y,lﬁln‘] l'l, ~ 0.6
maji
— More poloidal flux means more stored energy for Ohmic self-heating
Ay
Pseir = Atp Ip
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Key expected quantities

Quantity | ST,BO=3T | ST,BO=6T AT,B,=6T AT,B,=9T
1.7 m 1.7 m 24 m 24 m

maj

Win 1.0 Wb 1.0 Wb 1.0 Wb 1.0 Wb
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Key expected quantities

Quantity | ST,B,=3T | ST,By=6T AT,B,=6T AT,B,=9T
Raj 1.7m 1.7m 24 m 24 m
Wi 1.0 Wb 1.0 Wb 1.0 Wb 1.0 Wb
- 310 kA 160 kA 110 kA 73 KA
PF coil current 780 kA turns 780 kA turns 610 KA turns 610 KA turns
Vi 310V 310V 310V 310V
P(Voin) 40x103torr  2.0x103torr  1.5x103torr 1.0 x 103 torr
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Key expected quantities

Quantity | ST,B,=3T | ST,By=6T AT,B,=6T AT,B,=9T
Raj 1.7m 1.7m 24 m 24 m
Wi 1.0 Wb 1.0 Wb 1.0 Wb 1.0 Wb
- 310 kKA 160 kA 110 kA 73 kKA
PF coil current 780 kA turns 780 kA turns 610 kA turns 610 kA turns
Vi 310V 310V 310V 310V
P(Voin) 40x103torr  2.0x103torr  1.5x103torr 1.0 x 103 torr
I 1.1 MA 1.1 MA 0.77 MA 0.77 MA
Nplasma 6 x 1078 m3 3x1018 m3 2 %1018 m3 1% 10" m3
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Key expected quantities

Quantity | ST,B,=3T | ST,B,=6T | AT,B,=6T | AT,B,=9T

Raj 1.7m 1.7m 24 m 24 m
Wi 1.0 Wb 1.0 Wb 1.0 Wb 1.0 Wb
- 310 kKA 160 kA 110 kA 73 kKA
PF coil current 780 kA turns 780 kA turns 610 kA turns 610 kA turns
Vi 310V 310V 310V 310V
P(Voin) 40x103torr  2.0x103torr  1.5x103torr 1.0 x 103 torr
I 1.1 MA 1.1 MA 0.77 MA 0.77 MA
Nplasma 6 x 1078 m3 3x1018 m3 2 %1018 m3 1% 10" m3
P 4 MW 4 MW 3 MW 3 MW
n., for ECRH 9x10"¥m3 35 x 10" m3 35 x 10" m3 78 x 101" m-3
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Simulations with TSC support expectations of higher current, self-
_heating power, and temperatures with increased injector flux

« Tokamak Simulation Code (TSC) °

—~ 0.6
— Time-dependent, free-boundary 2 04
equilibrium and transport solver —Coob—0
— Solves MHD/Maxwell’'s equations 0 -
coupled to transport and Ohm'’s law s 4 | | =52 Wb
" : : 3 — 'in -
* Initial study: NSTX config. with = zwjgggm
increasing levels of injector flux: 5§ — _
o
— 952 mWb (typical NSTX experiment), 0 '
104 mWb, and 208 mWb gz | | |
. Supports main predicted trends % oi—
— |, increases in proportion with g, 02—
— Heating power, T, increase faster T o0 oT.'gs o 0.08 0.
Ime (S

~— ]

1
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Conclusions

» Requirements for attaining plasma breakdown must be
considered for future CHI implementations

— Breakdown modeling must be spatially resolved

— A simple model for assessing these requirements has been developed,
which applies the Townsend avalanche theory to each flux tube

« CHI systems in future reactors should avoid large electrodes
and instead use toroidal rings localized to the divertor

« Next-step devices will be able to use much more injector flux,
permitting MA-level plasma currents and higher temperatures
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Upcoming CHI experiments in QUEST and URANIA will test
_concepts to be implemented in fusion reactors

» Localized toroidal electrodes
— QUEST: single biased electrode
— URANIA: dual biased electrode

» Low-field side injection

« Coupling to ECRH heating

electrode

N\ ? electrode™
glF1 ‘ . y -:'\\‘ '

2.1m

Ceramic

HIPF7 insulator.

Ground
,! . electrode

clpe

| End
/|plate

‘Bias ?'ec“od‘e‘ NN Kuroda et al., Plasma Fusion Res.
Rapid Comm. 2017
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Supplement: assumptions about the effective secondary electron
_emission coefficient for CHI breakdown calculations

. for tokamaks is a special case of Paschen’s Law with

min

secondary electron coefficient y = 0.58

Tokamak model Paschen’s Law
Bp BL.p BL¢p

In (AL.p) Vinin = In (AL.p) Vinin = In(AL:p) —In[ln (1 + 1/7)]
« Measurements for parallel plates indicate y = 0.05 for D,

 Larger value may be valid in main vessel where L. is large and
particle paths make many revolutions

* In the injector gap, less “enhancement” of y is expected
— y = 0.01 assumed for injector region (pessimistic for our purposes)

Emin —
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Supplement: spatially-resolved calculation assisted interpretation

. of breakdown in DIII-D

 Breakdown location found to not
coincide with poloidal field null

» Better agreement found with maxima in
electric field integrated along flux tubes

1.0

|

vy LN AN
Vo M Y TN
\ LN N
! B \ \ \ Y N
LA T \

Z(m)

o
¢ o,
05 4 )
T

-1.0

|

1.

0 R(m) 20

Lazarus et al., Nucl. Fusion 1998
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Supplement: NIMROD simulations with high y;,; show peak
_current generation over 1 MA

« Simulations performed assuming — S —
qunj =0.35 me, BO =47 g P W, T R g .

* T, limited to 15 eV but will be

Total toroidal current (A)
2.0x10° ' ' ' '

1.5x10%F

1.0x10%F

5.0x10°F

8 ms 9.3 ms
(injection phase) (decay phase)

0

-5.0x10°

0.004 0.006 0.008 0.010 0.012 0.014 o _
t (sec) Ebrahimi, Nucl. Fusion 2016
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Supplement: additional values from the parameter comparison
table

| |
| Quantity | Dimension | ST34 ST64 AT64 AT94 |
[E— [E———— | < |
| r_axis | m | 1.70 1.70 2.40 2.40 |
| aspect | | 1.70 1.70 2.40 2.40 |
| max pf curr | kA | 782.42  782.42  610.21 610.21 |
| inj_ flux | mWwb | 1000.00 1000.00 1000.00 1000.00 |
| tor flux | Wb | 30.08 60.17 55.67 83.50 |
| gamma | | 0.01 0.01 0.01 0.01 |
| pAtVmin | 10"{-5} torr | 397.33 204.85 148.34 99.17 |
| vMin | V | 307.48 307.48 307.48 307.48 |
| bubbleCurr | kA | 310.42 155.21  109.94 73.29 |
| currMultFac | | 30.08 60.17 55.67 83.50 |
| Ip | MA | 1.09 1.09 0.77 0.77 |
| pol flux | m@b | 700.00  700.00 700.00  700.00 |
| vol ratio | | 22.50 22.50 25.75 25.75 |
| P self | MW | 3.82 3.82 2.71 2.71 |
| n_plasma | 10°{17} m"{-3} | 56.74 29.25 18.51 12.37 |
| n ol | 107{17} m"~{-3} | 873.68 3494.46 3494.24 7861.98 |
| n x2 | 107{17} m"{-3} | 1747.36 6988.92 6988.47 15723.95 |
| fecl | GHz | 83.87 167.72 167.72  251.58 |
| fec2 | GHz | 167.73 335.45 335.44  503.16 |
| |
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Supplement: CHI configuration on QUEST is developing ST-FNSF

d electrode design

relevant single-biase
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Kuroda et al.
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Supplement: Transient CHI start-up on QUEST

(b)
60

QUEST shot #36045
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30

20

Current (kA)
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,,,,,,,,,,,,,,,,,,,,,,,

current

| At =120
=

At=2.0 ms

35195

35200, 35205 35210 35215 35220 3.5225
Time (s)
Kuroda et al., Plasma Phys. Control. Fusion 2018
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Supplement: CHI research on PEGASUS plans to develop a
_double-biased electrode configuration to better define current path

CHI coils

1.5*1 %/ —

' 4 T o
A\\ a

1.00 - AAAT A >

Goals on Pegasus:

“High I, ~300 kA (@ PF coil

i limits for I,)
\\ -Flux footprint width
02 ‘ S characterization
CHI =8 : : -Role of impurities

90| Injector | A -Influence of current channel
E flux o R eut-2 shape on reconnection
N o .
s g gﬂ ) -Dynamo current drive

V ; Nosl eI [T N enhancement
“10, | —] A -ECH heating

) ) . (:./-j/
1 0.6 §

- '8.0 0.2 0.4 0.6 0.8 1.0 1.2
Radius (m)

‘ \ Collaboration with Univ. of Wisconsin:
" Radius (m) v v J. Reusch, R. Fonck, M. Bongard
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Supplement: implementation of a ring electrode in a ST-FNSF

'ﬁ— CHI Electrode

CHI Insulator

» Ring electrode is placed on top of
the upper blanket section

— Insulator plate isolates electrode from
blanket

— Injector flux connects upper portion of
the vessel to the electrode plate on
the upper portion of the blanket
assembly

— Electrode is largely shielded from
direct neutron streaming

Raman et al., Fusion Sci. Technol. 2015
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Supplement: Tokamak Simulating Code (TSC) simulations can
_help understand CHI scaling with machine size

NSTX experimental result

2F Injector Current (kA)

—
118340

Time (ms)

TSC simulation

\ /

Injector
po T

Current (kA) |

AN
\
¥
b‘\

L

. | Toroidal

Current (kA) | /

4

|

Raman et al.

Time-dependent, free-boundary, predictive
equilibrium and transport

Solves MHD/Maxwell’'s equations coupled to
transport and Ohm’s law

Requires as input:

— Device hardware geometry

— Coll electrical characteristics

— Assumptions concerning discharge characteristics
Models evolutions of free-boundary axisymmetric
toroidal plasma on the resistive and energy
confinement time scales

NSTX vacuum vessel is modeled as a metallic
structure with poloidal breaks

— An electric potential is applied across the break to
generate a desired injector current
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Supplement: further details on new TSC work

5

%10

« Time-dependent, free-boundary, predictive equilibrium and transport
» Solves MHD/Maxwell’s equations coupled to transport and Ohm’s law

« Transient CHI discharge initiated with injector flux values of 52, 104 and
‘416kA.turns(inj.qux:SZme ‘ ‘ ‘ ‘ 208me (BT = 1T)

— At the end of the CHI phase, injector current is reduced to zero

600//_\ — Transport equations solved to calculate input power & heating

— Plasma allowed to decay without any additional external heating sources
) e ——— e — Transport parameters maintained same for all cases

.« Simulations show an initial low normalized inductance plasma, consistent
08! with current being driven in the edge by the CHI process
=06} — Inductance increases as current diffuses radially in
04l — Transient CHI naturally produces a low initial inductance discharge needed for
‘ | | | | | | | high-performance ST and AT discharges (we may want to remove this frame and
associated text — to not spend too much time on this — think about it)

« The Ohmic input power increases with increasing injector flux
» Electron temperatures for the 208 m\Wb cases increases to over 500eV on

its own

0 oo oo - o o — 1 Wb plasmas may heat to the 1keV level on their own? (can delete sub bullets)
— Requires experimental verification
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Supplement: required experimental developments

* Bgsrinonten GUEST ad
URANIA will test CHI with finalized)

. M di 0.45

relevant properties: o

— Localized toroidal electrodes e | 92 e > iy

— Injection from the low-field side [ml

— Coupling to ECRH heating B, [T] 0.5 0.55 0.25-0.5 0.15-0.6
Injector flux 16 50 28 ~60
(mWb)
Projected 100 200 <150  ~300
Start-up
current (kA)
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