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The confinement of fast ions is a crucial issue for the success of ITER

ITER burning plasma design specification tolerates 5% of fast ion losses’

Neutral beam injection . L : :
trv in ITER In ITER, two negative-ion-based neutral beam injection sources, which will
geometry In account for 33MW of injected power (up to 50MW after upgrade installation
Singh et al, New J. Phys., 2017 O._" ﬁj_—.Q Ummgv.

In ITER, both the 3.5MeV fusion-born alpha particles and the tangentially
injected 1MeV NBI ions will have supra-Alfvénic velocities:vnpi/vaifven < 2
fast ions will interact with TAEs via their main resonance.

In this presentation: a study of the likely nonlinear evolution scenario
of Alfvénic instabilities upon their interaction with fast ions in ITER is
addressed

The prediction of the conditions that lead to each type of nonlinear scenario
helps to understand the applicability of reduced models

"ITER Physics Expert Group on Energetic Particles, Heating, Current Drive and ITER Physics Basis Editors 1999 Nucl.
5310 Fusion 39 2471

@Zm._.x-c APS DPP Meeting, Prediction of the likelihood of Alfvénic mode chirping in ITER baseline scenarios, Vinicius Duarte, 2018 2



Alfvén waves can exhibit a range of bifurcations upon their interaction
with fast ions in present day devices (s40% of fast ion loss)
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Major question in the field: why chirping is common in STs and rare in conventional tokamaks?
We develop and validate a criterion that indicates the likelihood of chirping in terms of plasma parameters
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Chirping is supported by phase-space structures: holes and clumps

Lilley and Nyqvist, PRL 2014

Stochasticity prevents the formation of

! holes and clumps. Multiple sources for it:
RF fields, collisions, NTMs, 3D fields,
resonance overlap,..

kx—-o t kx—-m t kx—m t
Two typical mom:mw_om for fast ion losses: i
— Diffusive transport (typical for fixed-frequency modes): can be modeled using reduced theories,
such as quasilinear
— Convective transport (typical for chirping frequency modes): needs to retain full nonlinear features
of the wave, is sustained by nonlinear phase-space structures (numerically costly)

n::._o_:m criterion (nonlinear prediction from linear physics elements) :
Crf — c\J% %Qt j\w_P Ay ®\~5_ >0: _n_x.maw?mn_.cmsﬁ\ solution likely
N s WoVgrag | O |01 | <0: chirping likely to occur
Turbulence is predicted to be a major chirping prevention mechanism
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Marked reductions of the turbulent activity causes chirping

onset in DIII-D
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These observations are consistent with the proposed criterion for chirping Duarte et al, NF 2017.
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Experimental scenario developed based on the theory: dedicated experiments showed
that chirping is more prevalent in negative triangularity DIII-D shots

» Transport coefficients calculated in TRANSP
are 2-3 times lower in negative triangularity, as
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GTS global gyrokinetics analyses show turbulence reduction for

rare NSTX TAE transitions from fixed-frequency to chirping

Electrostatic turbulence fluctuation
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Predictions for the most unstable n=7-11 TAEs and RSAEs' in
ITER are near boundary between fixed frequency and chirping

Analysis based on TRANSP modeling, requiring Q>10

Arrows show how radial turbulence diffusion?3 changes the prediction with respect to the purely collisional

dynamics
safety factor profile ITER hybrid scenario 05 ITER elmy H mode scenario ITER reversed shear (advanced) scenario
0.5 (b) fixed frequency | (©)  fixed frequency 0.5} (a) =7l
4 === reversed shear likely 0.25 fixed frequency
0.25 : 0.25 likel
— hybrid - " - . Ikely
3f == elmy W 0 WN 0 MLVH 0 1 _ _
= |ONm m |ONm = n=9 n=11 n=8
< 2 N T -0.25
2 S -05 S S
(mm £ -05 M
4 % -0.75 g % 709
-0.75
-1 chirping likely chirping likely -0.75 chirping likely
0 -1.25 -
0 0.25 0.5 0.75 1 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0O 10 20 30 40 50 60
\ Wel Weo 1 N\mgnr\?&mm Tmaoor\N\%mm N\maoor\T&Sm

Chirping can occur in ITER. New theoretical and numerical tools need to be developed for modeling.

"DOE OFES Theory Joule Milestone FY2007, Gorelenkov et al, PPPL Preprint number 4287 (2008), 2Lang & Fu, PoP 2011, 3Duarte et al, NF 2018.
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Summary

« The proposed chirping criterion has been validated against NSTX and DIII-D
data

e Chirping cannot be ruled out in ITER!
Q<10 and other decorrelation mechanisms, such as RF heating and resonance
overlap, will however enforce constant Alfvénic frequency.

» Theoretical and numerical tools should be developed for fully nonlinear
energetic particle transport in ITER
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