

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Contributed Oral Presentation YO5.00002: Status and Plans for the NSTX-U Recovery Project

J. Menard, S. Gerhardt, and R. Feder, for the NSTX-U Recovery and Research Teams

NSTX-U Mission Elements

- Exploit unique Spherical Tokamak (ST) parameter regimes to advance predictive capability - for ITER and beyond
- Develop solutions for plasmamaterial interface (PMI) challenge
- Explore ST physics towards reactor relevant regimes (Fusion Nuclear Science Facility, Iow-A Pilot Plant)

NSTX-U vital for addressing key ST / fusion questions

Maximum Parameters

	NSTX		NSTX-U
l _p	≤	1.4	2 MA
RΒ _τ	≤	0.47	0.94 m-T
P _{NBI}	≤	6	15 MW
P _{RF}	\leq	6	6 MW
τ _{pulse}	≤	1-2	5-10s

Conducting plates can suppress global kink instabilities

New tangential NBI

- Higher B_T (1 T at R_0) \rightarrow projected largest range in β and (lower) v_* in an ST
- Higher stability $\beta_N / I_i \le 14 + \text{flexible NBI} \rightarrow \text{high / full non-inductive current}$

Need Recovery to reliably achieve NSTX-U full performance

- NSTX-U had scientifically productive FY16 run
 - H-mode on 8th day of 10 weeks of operation
 - Surpassed magnetic field and pulse-duration of NSTX
 - Discovered new 2nd NBI suppresses Alfvénic instabilities
 - …ceased operations due to failed divertor PF coil
- FY2017: "Extent of Condition" review identified additional deficiencies needing "Recovery"
- FY2018 primary Recovery activities:
 - PPPL-DOE agreement on Recovery Project scope
 - (Re-)design critical and/or long-lead components
 - Develop initial cost and schedule estimate for Project

Section of failed PF1AU

Recovery scope critical for robust research facility

- 1. Rebuild all 6 inner-PF coils
- 2. Improve the "polar regions"
- 3. Strengthen passively conducting plates
- 4. Replace plasma facing components that cannot be qualified
- 5. Reassemble with improved alignment of magnets & structures
- 6. Design and install improved Bakeout System
- 7. Implement mechanical instrumentation
- 8. Improve neutron shielding of test cell, safety order & systems Commissioning, achieve key performance parameters, 1st plasma

1. Nominal prototype PF1 coil testing completed

PPPL PF1 prototype section

Technicians preparing for electrical testing of one of the sectioned PF1 prototype coils

- Built 4 prototype PF1A coils
- All prototypes passed electrical tests
- VPI inspections indicate 2 vendors qualified, other 2 vendors may qualify with remediation
- Request for Proposal prep underway including all 3 external vendors
- Performing lifetime/corona tests on section of coil with largest VPI voids

NSTX-U

2. Robust polar region design developed

Design Features

- Supports mandrel-free coils against all static and transient EM loads, provides preload, improves bakeout
- Provides mounting structures and heating / cooling for Plasma Facing Component (PFC) Tiles
- Provides robust elements of vacuum boundary, with double O-ring seals

3. Passive plate issues remedied with additional hardware

- Passive plates are Cu conductive plates covered by graphite tiles
 - Plates suppress plasma instabilities
- Issues, and → resolution:
 - Plates flexing under disruption EM load
 Plate back stiffeners
 - Unacceptable motion in plate bracketry
 Stronger bolts, augment in-situ fasteners
 - Non-uniform electrical resistivity
 Dedicated electrical connections (straps)
 - Excessive EM loads on He bakeout tubes
 Dedicated tube supports
- Solutions can be implemented without significant disassembly

External Biscuit & Supports

Electric Strap

4. New tile designs meet thermal and EM load requirements

5. Alignment / tolerances managed via systems engineering

- Issues from NSTX-U / 2016 run:
 - Casing significantly tilted relative to TF, TF tilted relative to VF → locked modes, NTV rotation damping degraded global stability
 - Casing-OH micro-therm insulation showed signs of damage when casing was removed
- Recovery: comprehensive alignment requirements and tolerance allocations
 - TF and divertor PF coils / divertor targets → non-axisymmetric heat fluxes on divertor PFCs
 - Inner TF / vertical field coils \rightarrow global stability
 - FY18: Successful casing/TF-bundle trial-fit

6. Bakeout scope will improve safety and performance

- Additional interlocks/safety devices to mitigate risk of vaporization of 150C water for vessel bake
- Implement 6 new hot-He feed-thrus to replace existing designs that exceed
 thermal stress allowable
- Improve measurements and control of hot He distribution
- Heat transfer plate to improve He bake

7. Machine instrumentation will diagnose and trend machine behavior

- Validate structural models that are basis for designs and coil protection systems
- Trend behavior / degradation of any critical components of the machine

8. Neutron shielding designs support NSTX-U full performance operation (2MA, 1T, 10MW, 5s)

In south high bay, looking toward gallery door

Summary

- NSTX-U Recovery critical for U.S. to retain worldleading improved-reliability user facility for ST science
- Recovery technical scope has progressed significantly
- Project execution plan, integrated project team in place
- Timeline:
 - FY19: Baseline project, complete design, initiate fabrication
 - FY20: Fabrication, installation
 - FY21: Final installs, commission, 1st plasma, resume research

Backup

Recovery scope is critical to Research program

- 1. Rebuild all 6 inner-PF coils
 - Ensure overall core device reliability and availability for users
 - > Strong shaping / high β , divertor heat flux mitigation, advanced divertors
- 2. Improve the "polar regions" = top and bottom-most regions of vacuum chamber
 - Ensure high vacuum / reduce impurities for high confinement, lithium
- 3. Repair passively conducting plates
 - > Access strongest shaping and highest β at full field and current (1T, 2MA) to stay world-leading
- 4. Replace plasma facing components that cannot be qualified
 - Support device full performance: 1T, 2MA, 10MW, 5s to stay world-leading, ensure reliability
- 5. Reassemble NSTX-U with improved alignment of magnets and structures
 - > Maximize plasma performance: high rotation, β , confinement, exhaust power handling
- 6. Design and install improved Bakeout System
 - Eliminate safety issues, potential reliability issues
- 7. Implement mechanical instrumentation
 - Verify machine performance consistent with engineering models, ensure reliability
- 8. Improve test-cell neutron shielding, implement ASO and Personnel Safety System (PSS)
 - Facility operational excellence, support higher performance and increased DD neutron yield