

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Enhanced Pedestal H-mode Regime on NSTX

D.J. Battaglia, R.E. Bell, S.P. Gerhardt,

W. Guttenfelder, S.M. Kaye and R. Maingi

60th Annual APS DPP Meeting Portland, OR November 5 – 9, 2018

Place your institutional logo(s) here:

Enhanced Pedestal (EP) H-mode: ELM-free with improved τ_E and reduced particle confinement

- ELM-free H-modes are attractive scenarios provided suitable particle transport is achieved
- EP H-mode on NSTX achieves larger τ_{E} and particle transport compared to ELM-free H-mode
 - Often observed after a large ELM
 - Sustained without ELMs and large MHD activity
 - $H_{98y,2} \sim 1.2 2$ with largest gains in ion stored energy
- Observed over a wide range of shapes, $I_{p},\,B_{T},\,q_{95},\,P_{NBI}$
 - Requires reduced neutral fueling and large wall pumping
 - About 50 EP H-mode discharges identified

R. Maingi et al., J. Nucl. Mat. 390-1, 440-3 (2009) R. Maingi et al., PRL 105, 135004 (2010) S. Gerhardt et al., NF 54, 083021 (2014)

Enhanced Pedestal (EP) H-mode: ELM-free with improved τ_E and reduced particle confinement

This talk aims to show...

- Positive feedback in the pedestal transport and stability can occur at low ion collisionality
 - Sufficiently low pedestal collisionality is achieved on NSTX with reduced neutral fueling
- Reduced neutral recycling during the ELM recovery can trigger the positive feedback
- EP H-mode occurs when ...
 - An increase in the edge turbulent transport...
 - Reduces the edge density that ...
 - Drives a significant decrease in the neoclassical ion thermal transport

Significant improvement in temperature profiles with subtle differences in E_r, density and flow

- Larger ∇T_i
 - T_e pedestal can get wider and/or increase in gradient
 - T_C T_e increases
- Reduction in ∇n and density at edge
 - ¬ ∇P shifts inward, improving ELM stability
- Lower v_i* due to lower n, larger T
- Larger ∇E_r and ∇v_φ and shifted inwards

60th APS DPP, EP H-mode on NSTX, D.J. Battaglia, November 9, 2018

Significant improvement in temperature profiles with subtle differences in E_r, density and flow

- Larger ∇T_i
 - T_e pedestal can get wider and/or increase in gradient
 - $-T_{C}-T_{e}$ increases
- Reduction in ∇n and density at edge
 - ∇P shifts inward, improving ELM stability
- Lower v_i* due to lower n, larger T
- Larger ∇E_r and ∇v_φ and shifted inwards

60th APS DPP, EP H-mode on NSTX, D.J. Battaglia, November 9, 2018

Significant improvement in temperature profiles with subtle differences in E_r, density and flow

- Larger ∇T_i
 - T_e pedestal can get wider and/or increase in gradient
 - $-T_{C}-T_{e}$ increases
- Reduction in ∇n and density at edge
 - ¬ ∇P shifts inward, improving ELM stability
- Lower v_i* due to lower n, larger T
- Larger ∇E_r and ∇v_φ and shifted inwards

60th APS DPP, EP H-mode on NSTX, D.J. Battaglia, November 9, 2018

Larger ∇T_i in EP H-mode is consistent with neoclassical transport

- Stabilization of ITG in high-rotation STs drives $\chi_i \rightarrow \chi_{i,neo}$
- Approximate banana regime main ion heat flux (Tokamaks, Wesson):

$$q_{i} = -0.68 \frac{\varepsilon^{-3/2} q^{2} \rho_{i}^{2}}{\tau_{i}} (1 + 0.48 \varepsilon^{1/2}) n \frac{dT_{i}}{dr}$$
$$q_{i} \sim \frac{-Z_{eff} n_{e} n_{i}}{I_{p}^{2} \sqrt{T_{i}}} \frac{dT_{i}}{dr} \qquad \text{(Constant shape)}$$

 ∇T_i increases as density decreases at constant q_{i,neo}

Database illustrates largest $-\nabla T_i$ achieved when neoclassical transport expected to be small

- Database of all NSTX CHERS profiles with P_{NBI} > 2 MW
 - Identify max - $\nabla T_{i,ped}$ for each profile
 - Each color represents factor 2 increase in database entries
- Rapid rise in ∇T_i at low density, high I_p at constant q_i
 - 10% of database entries satisfy typical EP H-mode designation

$$-\frac{dT_i}{dr} \sim q_i \left(\frac{Z_{eff} n_e n_i}{I_p^2 \sqrt{T_i}}\right)^{-1}$$

Database illustrates largest $-\nabla T_i$ achieved when neoclassical transport expected to be small

- Database of all NSTX CHERS profiles with P_{NBI} > 2 MW
 - Identify max - $\nabla T_{i,ped}$ for each profile
 - Each color represents factor 2 increase in database entries
- Rapid rise in ∇T_i at low density, high I_p at constant q_i
 - 10% of database entries satisfy typical EP H-mode designation

 $-\frac{dT_i}{dr} \sim q_i \left(\frac{Z_{eff} n_e n_i}{I_p^2 \sqrt{T_i}}\right)^{-1}$

1-D transport model illustrates large impact edge density has on T_i profile when $\chi_{i,neo} >> \chi_{i,anom}$

60th APS DPP, EP H-mode on NSTX, D.J. Battaglia, November 9, 2018

Reduction in recycling during ELM recovery can reduce edge density, slow impurity pinch and reduce CX losses

60th APS DPP, EP H-mode on NSTX, D.J. Battaglia, November 9, 2018

Ion-scale turbulence measurements and calculations indicate TEM drives transport at the pedestal foot

- Wide pedestal on NSTX: predominantly TEM driven by ∇T_e
 - Growth rates larger than E×B shearing rates ($\gamma_{\rm E}$) for $\psi_{\rm N} > 0.9$
 - Weak low- k_{θ} MTM at at top of pedestal
- BES fluctuation measurements and linear CGYRO calculations are similar for both H-mode and EP H-mode
 - Ion-scale fluctuations shift to higher frequency in large ∇T_i region
 - Qualitatively consistent with CGRYRO predicted $\Delta \omega_r$ due to larger ∇T_i

60th APS DPP, EP H-mode on NSTX, D.J. Battaglia, November 9, 2018

H-mode 141125 EP H-mode 141133

ո_e (10¹⁹ m⁻¹³)

EP H-mode: Improved energy confinement and increased particle transport at low collisionality

- Accessed at low-collisionality where $\chi_{i,neo}$ is sensitive to small changes in density and Z_{eff}
 - EP H-mode occurs when edge anomalous transport increases, but reduction in $\chi_{i,neo}$ exceeds increase in $\chi_{i,anom}$
- Temporary reduction in neutral recycling during an ELM recovery can trigger EP H-mode
- Motivates edge density control that is compatible with $n/n_{GW} \rightarrow 1$ and heat flux mitigation
 - Baffled divertor in MAST-U, lithium research on NSTX-U
 - Increased field in Upgrade STs will access lower collisionality regimes

Reduced transport model illustrates large impact edge density has on T_i profile with $\chi_{i,neo} > \chi_{i,anom}$

- Reduced 1D transport model illustrates impact of density on energy confinement
 - Fixed geometry, q-profile & volumetric heating
 - Density profiles are an input
 - Neoclassical ion transport (Wesson)
 - Fixed $T_{\!\scriptscriptstyle esep}$
 - Fixed T_e gradient scale length when $T_e < T_i$
 - Fixed χ_e when $T_e = T_i$
 - Ion-electron coupling
 - Separatrix T_i proportional to q_i
- Small change in edge density, large change in edge ∇T_i and core T_i

Differences in ion species v_{dia} may describe concurrent increase in ∇v_{ϕ} with ∇T_i

- C⁶⁺ and D⁺ density pedestals are not aligned
 - Difference in v_{dia} increases with ∇T_i
- Concurrent increase in ∇v_{φ} and ∇E_r with ∇T_i is often observed during ELM recovery
 - Simple model reproduces this when using many assumptions
 - V_{pol} = 0 everywhere for all species
 - $V_D = V_{dia} + V_{ExB}$ does not change with density, T_i
 - T_D = T_C
- Change ∇T_i drives change in ∇v_φ

Edge gradients increase and location of maximum gradient shifts inward

Max $-\nabla T_i$ increases at decreasing density and increasing I_p , consistent with neo model

60th APS DPP, EP H-mode on NSTX, D.J. Battaglia, November 9, 2018

Position of max - ∇T_i in model sensitive to the T_e profile

Two EP H-mode discharges 141133 (left): max $-\nabla T_i$ is near separatrix 141340 (right): max $-\nabla T_i$ is 4 cm inside separatrix

Top of T_e pedestal shifted inward compared to 141133

 $e \rightarrow i$ coupling reduces q_i , and thus, dT_i/dR near separatrix

Provides explanation for why position of large T_i gradient can vary between examples

Characteristics of EP H-mode

- Max -∇T_i can occur anywhere within wide pedestal on NSTX
 - Location of max - ∇T_i is outboard of other max gradients (v_{ϕ}, E_r, T_e...)
 - Tends to align near minimum of E_r and v_{φ} well
- Transition most often triggered by an ELM
 - Increased -∇T_i develops over transport timescales (order 10 - 100 ms)
 - Carbon rotation gradient grows concurrently
- Observed over a wide range of shapes, $I_{p},$ $B_{T},$ $q_{95},$ $\beta_{p},$ $P_{NBI},$ applied n=3 field
 - More common at low-q $_{95}$, but best performance at higher q $_{95}$
 - Reduced neutral fueling and large wall pumping is a common characteristic

INSTX-U

60th APS DPP, EP H-mode on NSTX, D.J. Battaglia, November 9, 2018