

Validation of Ion and Electron Scale Gyrokinetic Simulations in NSTX and Comparisons with a High-k Scattering Synthetic Diagnostic

J. Ruiz Ruiz¹

W. Guttenfelder², A. E. White¹, N. Howard¹, N. F. Loureiro¹, J. Candy³, Y. Ren², D. R. Smith⁴, C. Holland⁵ 1. MIT 2. PPPL 3. General Atomics 4. U Wisconsin 5. UCSD

60th Annual Meeting of the APS Division of Plasma Physics Portland, Oregon, Nov 5-9, 2018

Work supported by DOE contracts DE-AC02-09CH11466 and DE-AC02-05CH11231

Extensive validation effort underway to study electron thermal transport in NSTX H-mode plasma

- NBI heated H-mode with controlled current ramp-down; two steady discharge phases, little MHD activity
- Local increase in equilibrium density gradient |∇n| modifies ETG drive from strong to weak, consistent with changes in measured high-k turbulence [Ruiz Ruiz PoP 2015]

• In this work:

Compare experimental heat fluxes and measured high-k turbulence are to validate extensive set of nonlinear ion-scale and electron-scale gyrokinetic simulations

Compare experimental Q_e to all simulations; measured high-k turbulence only to e- scale simulations

- <u>Electron heat flux (Q_e) comparisons</u> with TRANSP are done via sensitivity scans of GYRO simulations within exp. uncertainties
- <u>High-k turbulence comparisons</u> will deploy a new synthetic diagnostic to e- scale simulations that best match to Q_e^{exp}
- Can e-scale simulations reproduce the high-k frequency & wavenumber spectra?

GYRO code is used to perform ion-scale and electron-scale nonlinear gyrokinetic simulations

- **Ion scale** simulation resolves low-k turbulence $k_{\theta}\rho_s \approx 1$
- Electron scale simulation resolves ETG-scale turbulence $1 < k_{\theta}\rho_s \gtrsim 60$

- Experimental profiles used as input
- Local simulations performed at scattering location (r/a~0.7, R~135 cm).
- 3 kinetic species, D, C, e (Z_{eff}~1.85-1.95)
- Electromagnetic: $A_{\parallel}+B_{\parallel}$, $\beta_e \sim 0.3$ %.
- Collisions ($v_{ei} \sim 1 c_s/a$).
- ExB shear ($\gamma_{\rm E}$ ~0.13-0.16 c_s/a) + parallel flow shear ($\gamma_{\rm p}$ ~ 1-1.2 c_s/a)
- Fixed boundary conditions (buffer widths)

Local ion and electron-scale simulations under-predict experimental Q_e with experimental gradients as input

Sensitivity Scans for Heat Flux Comparisons

Sensitivity scans carried out to maximize turbulent drive within error bars

Sensitivity scans carried out to maximize turbulent drive within error bars

Ion scale simulation

- Scans (a/L_T, a/L_n)
- Suppressed by ExB shear ($Q_e^{sim} \sim 0$)

Sensitivity scans carried out to maximize turbulent drive within error bars

Ion scale simulation

- Scans (a/L_T, a/L_n)
- Suppressed by ExB shear ($Q_e^{sim} \sim 0$)

Electron scale simulation •

- Scans (a/L_T, a/L_n)
- Can match Q_e^{exp}

Sensitivity scans carried out to maximize turbulent drive within error bars

Ion scale simulation

- Scans (a/L_T, a/L_n)
- Suppressed by ExB shear ($Q_e^{sim} \sim 0$)

Electron scale simulation •

- Scans (a/L_T, a/L_n)
- Can match Q_e^{exp}

Electron scale simulation ●

- Scan (a/L_T, a/L_n, q, s)
- Can match Q_e^{exp}

Sensitivity scans carried out to maximize turbulent drive within error bars

Ion scale simulation

- Scans (a/L_T, a/L_n)
- Suppressed by ExB shear ($Q_e^{sim} \sim 0$)

Electron scale simulation •

- Scans (a/L_T, a/L_n)
- Can match Q_e^{exp}

Electron scale simulation ●

- Scan (a/L_T, a/L_n, q, s)
- Can match Q_e^{exp}

Ion heat flux Qi close to neoclassical levels

NSTX-U

lon scale sim (TEM)

- Scans in a/L_T , $(a/L_n \text{ scaled } 1-\sigma)$
- Extremely stiff: $Q_e^{sim} \rightarrow 10 X Q_e^{exp} !!$

lon scale sim (TEM)

- Scans in a/L_T , $(a/L_n \text{ scaled } 1-\sigma)$
- Extremely stiff: $Q_e^{sim} \rightarrow 10 X Q_e^{exp} !!$

lon scale sim (TEM)

- Scans in a/L_T , $(a/L_n \text{ scaled } 1-\sigma)$
- Extremely stiff: $Q_e^{sim} \rightarrow 10 X Q_e^{exp} !!$

Electron scale sim (ETG)

- Scans in a/L_T , $(a/L_n \text{ scaled } 1-\sigma)$
- Less stiff, under-predicts Q_e^{exp}

Ion heat flux Qi close to neoclassical levels

NSTX-U

Portland, Oregon, November 5-9 2018

High-k Turbulence Comparisons

Deploy synthetic diagnostic to highest Q_e e- scale simulations

Highest Q_e e- scale simulations match k-spectrum shape and fluctuation level ratio

Strong ETG Drive (matched Q_e^{exp}**)**

• Reproduces shape of *k*-spectrum

Weak ETG Drive ($Q_e^{sim}/Q_e^{exp} \sim 65\%$)

• *k*-spectra can be matched within error bars

NSTX-U

Highest Q_e e- scale simulations match k-spectrum shape and fluctuation level ratio

Strong ETG Drive (matched Q_e^{exp}**)**

• Reproduces shape of *k*-spectrum

Weak ETG Drive ($Q_e^{sim}/Q_e^{exp} \sim 65\%$)

• *k*-spectra can be matched within error bars

Can match fluctuation level ratio S(Strong ETG Drive)/S(weak ETG Drive)

f-spectra: k-resolution in e- scale simulation too coarse for quantitative comparisons
→ need big-box e- scale simulations

Highest Q_e e- scale simulations match k-spectrum shape and fluctuation level ratio

Strong ETG Drive (matched Q_e^{exp})

• Reproduces shape of *k*-spectrum

Weak ETG Drive ($Q_e^{sim}/Q_e^{exp} \sim 65\%$)

k-spectra can be matched within error bars

Can match fluctuation level ratio S(Strong ETG Drive)/S(weak ETG Drive)

f-spectra: k-resolution in e- scale simulation too

<u>coorco for quantitativo compario pr</u>

Conclusion from synthetic comparisons: Match shape of *k*-spectrum and fluctuation level ratio between strong and weak ETG drive, consistent with Q_e agreement

Conclusions and Next Steps

Strong ETG Drive

- <u>lon-scale</u> turbulence is suppressed
- <u>e- scale</u> can match Q_e^{exp}, consistent with agreement in high-k wavenumber spectrum

e- scale turbulence (ETG) is likely responsible for Q_e^{exp}

Weak ETG Drive

- <u>Ion scale</u> sim can bracket Q_e^{exp}, extremely stiff transport
- <u>Electron scale</u> is active, under-predicts Q_e^{exp}

Ion scale turbulence (TEM) might be responsible for most Q_e^{exp}, cross-scale interactions likely important (ETG active)

Next Steps

- Multi-scale simulation of NSTX H-mode + quant. comparisons with syn. diagnostic
- Deploy synthetic diagnostic for additional NSTX discharges
- Projections of new high-k diagnostic for NSTX-U

Additional Material

Input Parameters into Nonlinear Gyrokinetic Simulations Presented

	t=398 t	: = 565			
r/a	0.71	0.68	R _o /a	1.52	1.59
a [m]	0.6012	0.596	SHIFT =dR _o /dr	-0.3	-0.355
n _e [10^19 m-3]	4.27	3.43	KAPPA = κ	2.11	1.979
T _e [keV]	0.39	0.401	s _k =rdln(κ)/dr	0.15	0.19
a/L _{ne}	1.005	4.06	DELTA = δ	0.25	0.168
a/L _{Te}	3.36	4.51	s _δ =rd(δ)/dr	0.32	0.32
β_e^{unit}	0.0027	0.003	Μ	0.2965	0.407
a/L _{nD}	1.497	4.08	γ_{E}	0.126	0.1646
a/L _{Ti}	2.96	3.09	γ _p	1.036	1.1558
T _i /T _e	1.13	1.39	ρ.	0.003	0.0035
n _D /n _e	0.785030	0.80371	λ _D /a	0.000037	0.0000426
n _c /n _e	0.035828	0.032715	c _s /a (10 ⁵ s-1)	4.4	2.35
a/L _{nC}	-0.87	4.08	Qe (gB)	3.82	0.0436
a/L _{TC}	2.96	3.09	Qi (gB)	0.018	0.0003
Z _{eff}	1.95	1.84	Bt_loc [T]	-0.35	-0.35
nu _{ei} (a/c _s)	1.38	1.03	c _s [m/s]	2.10 ⁵	2.10 ⁵
q	3.79	3.07	Ω _i [1/s]	3.5*10 ⁷	3.5*10 ⁷
S	1.8	2.346			

NSTX-U

Hybrid Scale Simulation Necessary to Correctly Resolve High-k Scattering Wavenumber

Measurement-k from channels 1-3 of high-k scattering system in NSTX mapped to GYRO wavenumber grid

Hybrid scale is NOT multiscale simulation:

- $k_{\theta}\rho_s^{\min} = 0.3$, but does not fully resolve ion scales
- Only run for e- time scales ($T^{sim} \sim 30a/c_s$)

Synthetic f-spectrum at High ETG Drive, Ch1

Portland, Oregon, November 5-9 2018

Numerical Resolution Details of GYRO Simulations Needed for Synthetic Diagnostic of High-*k* Scattering

- Extensive Box size scans show Hybrid
 Scale Simulation is trade off:
 - Computational cost ~ 0.5 M CPU h
 - Correctly resolving experimental k

 $L_r \ge L_y = 20-14 \ge 21-16 \rho_s (L/a \sim 0.08)$ $n_r \ge n = 512-450 \ge 140-220$

- Electron Scale Simulation:
 - Only e- scale turbulence

L_r x L_y = 4 x 6 ρ_s (L/a ~0.02) n_r x n = 192 x 42

Hybrid Scale

Experimental f-spectrum for ch1, 2, 3

Exp data: ch = 2 t = 0.398 s || p = 1.2105 [au], <f> = -809.7443 kHz, σ_f = 199.4687 kHz t = 0.565 s || p = 0.049233 [au], <f> = -1211.6233 kHz, σ_f = 347.58 kHz

Exp data: ch = 3 t = 0.398 s || p = 0.17445 [au], <f> = -617.8898 kHz, $\sigma_{\rm f}$ = 196.1087 kHz t = 0.565 s || p = 0.029665 [au], <f> = -1218.6242 kHz, $\sigma_{\rm f}$ = 341.6567 kHz

High ETG Drive condition for ch3 has little doppler shift from f=0 (lowest $k \rightarrow low k.v$) \rightarrow contamination of signal by f=0 noise peak

Total Thermal Transport Budget at Low ETG

- $Q_e^{exp} \sim 1 \text{ MW}$ - Can be matched by ion scale GK sim within $1\sigma(+\nabla T_e, -\nabla n_e)$
- Q_i^{exp} ~ 0.23 MW
 - $Q_i \ll Q_e$
 - $Q_i^{sim}(ion scale) \sim 10X Q_i^{exp}$ within
 - 1σ (+ ∇ T_e,- ∇ n_e) (similar to Q_e)
 - \rightarrow Can be matched by ion scale GK sim
 - Neoclassical Q_i still TBD.

Experiment sits near nonlinear threshold of both ion and electron scale turbulence.

Ionscale turbulence displays much higher stiffness than e- scale

GYRO simulations using exp. inputs (∇T , ∇n) under-predict fluctuation power at low ETG drive

High ETG Drive ($Q_e^{sim}/Q_e^{exp} \sim 20\%$):

 GYRO cannot match spectrum at lowest-k (unclean diagnostic signal)

Low ETG Drive ($Q_e^{sim} \sim 0$)

 Underprediction in fluct. power consistent with under-prediction in Q_e for experimental (∇T, ∇n) inputs in GYRO (hyb. scale shown)

Hybrid-scale sims better match shape of f-spectrum (dominated by Dop shift, not shown)

Detected fluctuation power is scaled by constant (diagnostic not absolutely calibrated)

Mapping $(k_r \rho_s, k_\theta \rho_s)_{GYRO} \rightarrow (k_R, k_Z)^{exp}$

Preamble 3 Wavenumber mapping under simplifying assumptions

$$k_{R} = (k_{r}\rho_{s})_{GYRO} \left|\nabla r\right| / (\rho_{s})_{GYRO}$$

$$k_{Z} = (k_{\theta} \rho_{s})_{GYRO}^{loc} / (\kappa . \rho_{s})_{GYRO}$$

- Assumptions
 - $-\zeta=0$, d ζ /dr=0 (squareness + radial derivative)
 - $Z_0 = 0$, $dZ_0/dr = 0$ (elevation + radial derivative)
 - UD symmetric (up-down asymmetry of flux surface)
 - theta=0 (outboard mid-plane)
- In the following slides, develop mapping when assumptions are not satisfied, invert

 $(\mathsf{R}(\mathsf{r},\theta),\mathsf{Z}(\mathsf{r},\theta))=(\mathsf{R}_{\exp},\mathsf{Z}_{\exp}) \rightarrow (\mathsf{r}_{\exp},\theta_{\exp})$.