

High Heat Flux Testing of Castellated Graphite Plasma Facing Components

TK Gray, DL Youchison, MA Jaworski, T Looby, ML Reinke, G Smalley, and DE Wolfe

APS-DPP November 8, 2018

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

NSTX-U PFC tiles were re-designed to accommodate increased thermal loads

- Upgrade results in increased heat flux as well as halo loads on PFCs
- Tiles are designed to be <u>temperature limited</u> rather than <u>stress limited</u>
 - Will use graphite PFCs to minimize risk to research program
- Resulted in a castellated PFC tile design
 - Relieves internal stress
 - Increases tolerable heat fluxes above older PFC designs

Castellated PFC tile designs have been extensively analyzed using ANSYS

- Models were generated to evaluate new heat flux requirements
 - Iterative process with physics requirements/research program
- Original analysis assumed uniform heat flux on the surface
- Further refinement lead to the application of heat flux patterns indicative of a strike point

Overview of PFC Heat Flux Requirements

- Complete listing of thermal requirements for all PFC regions is specified in NSTX-U Requirements document
- In general, PFC tiles will be limited to:
 - T_{surf, peak} < 1600 °C at end of 5 sec pulse
 - No leading edges are allowed for forward helicity cases
 - Led to the addition of a 1° fish scale
 - For reverse helicity, tiles shall be designed so that local T_{surf} < 2000
 °C

<u>IBDH</u>	Case # ->	1	2	3	4
Range of Application	m	0.47 < R < 0.6		R < 0.6	R < 0.47
Extent	cm	15	full	full	full
Max Angle	degrees	1.0	5.0	-1	4.0
Min Angle	degrees	1.0	5.0	-5	1.0
Heat Flux	MW/m ²	6.5	5.4	1	3.5
Duration	sec	1.5	5	1	5
Reference Scenario		Stationary High lp/Bt w/ large poloidal flux expansion	High Ip/Bt Long Pulse Swept Case	Reversed Helicity Requirement	Spill Over From HHF Regions

Castellated Target Assembly was designed to evaluate high heat flux testing facility

- Designed to:
 - Mimic castellated geometry of NSTX-U Recovery PFC tiles
 - Machined out of POCO graphite
- However this castellation target was not designed to with stand high heat fluxes
- Needed to evaluate whether heat flux could be quantified in the Electron Beam (EB) facility

Comparison of IBDH prototype tile and castellated target tested

IBDH Prototype Tile Design

Castellation Area	1"×1"		
Castellation Depth	1.25"		
Material	SGL R6510		

- Rail and pin mounting scheme for each tile
- Grafoil used between tile and mounting plate
 CAK RIDGE

Material POCO

- Simple 4-corner bolt restraining target
- Grafoil used between tile and Cu mounting plate

6

National Laboratory

Electron Beam (EB) Facility at ARL is primarily used for Physical Vapor Deposition (PVD) of thin-films

- Uses multiple electron beams to:
 - Vaporize materials
 - Maintain temperature of deposition substrate
 - 6 gun ports, 4 routinely used
 - Limited to 10 Hz raster rate
- For High Heat Flux (HHF) testing,
 - Used a single electron beam @ 17 kV
 - Impingement angle of 47° on target
- Addition of a "new" raster controller allowed deposition of strike-point-like heat flux deposition patterns
 - Using the raster controller from the EB60 system formerly at Sandia NL

EB Facility @ ARL

Castellated target installed in EB Facility

Additional Instrumentation Installed on EB Facility

• Imaging:

- MIRO camera for fast visible images
 - 100 Hz
- FLIR SC4000 for IR measurements (30 Hz)
 - Calibrated on-the-bench @ ARL up to 1200 C
- Instrumented graphite tile
 - Embedded TC in each castellation
 - Calibrated TCs with Fluke 743B
 - 2 point cal. @ 100 and 1200 C
 - Digitized using off the shelf Instrunet DAQ
 - 10 Hz acquisition rate
- Beam and diagnostic timing was controlled manually

Chamber Set-up HHF, Sciaky 2-20-2018 (17)

Chamber Set-up HHF, Sciaky 2-21-2018 (11)

Tested strike-point-like heat flux deposition patterns on target

Vational Laboratory

- Tested several heat flux extents
 - Large extent = 15 cm
 - Small extent = 4 cm
 - Failure Test (extent = 2 cm)
 - e-beam was focused onto a single castellation
- Scanned electron beam current for each pattern
 - $-100 \text{ mA} \le I_{\text{beam}} \le 1500 \text{ mA}$
 - 10 sec long depositions

Incident heat flux calculated from a semi-infinite heat conduction model

- Comparable 1000 mA shots with different extents
 - 10 sec durations
- 4cm extent shots placed most of the beam power onto ~2 castellations
 - Resulting in much higher T_{surf} and heat fluxes
 - T_{surf} > 1600 C by end of the shot
- Subsequent shots (I_{beam} ≥ 1000 mA) showed "ablative behavior"

Finite Element Analysis (FEA) predicts localized stress concentrations around thermocouple diagnostics

- Applied a 5 sec, uniform heat flux on target surface of 10 MW/m²
- FEA also predicts internal stresses lead to target failure
 - Assumes a uniform heat flux
 - T_{surf, fail} >> 2000 C
- However, the predicted T_{surf} at failure is above the sublimation temperature of graphite

Predicted Temperature Distribution

Predicted Internal Stress Distribution

Target failure is prevented by ablation of graphite from the surface of the target

- IR measurements show clamping of $T_{surf} \sim 1650$
 - Camera is close to saturation
 - Likely behaving nonlinearly
- The quantitative measure of T_{surf} is suspect
- Based on postexposure inspection, showed evidence of ablation

Clear evidence of graphite ablation from the target in post-exposure inspection

- Ablation craters generated during failure tests
 - E-beam was focused onto single castellations
- Ablation craters were ~
 1mm in depth
- No mechanical failure of target was found during inspection

Visible image of castellation during cool-down

Typical time trace of measured temperature rise during shot

Rise in Thermocouple Temperatures was linear until I_{beam} = 1000 mA

- As the extent of beam narrowed, ΔT_{TC} increased for a given beam current
- Clamping of TC temperature was observed for I_{beam} > 1A
 - Measurements past limits of IR calibration
 - Near upper temperature limit of type K TCs

Castellation #11 received the most energy

Measurements of $T_{\mbox{surf}}$ show increase for shots where ablation occurred

- As I_{beam} is increased, $\Delta T_{surf}{}^{\rm IR}$ increases while $\Delta T_{\rm TC}$ decreases
- At I_{beam} > 1000 mA, TC measurements are inconsistent with IR
- Indicative of graphite dust and particles in IR field of view and particles in IR field of view
 - No longer thermally connected to target
 - Dust/particles radiate due to incident e-beam

ational Laborator

FEA of single, 2D castellation predicted variation in TC response based on depth below surface

- Assuming 5 sec, uniform heat flux deposition
 - Castellation base held at constant T
 - Sides of castellation were allowed to radiate to environment

- TC depth was varied for a 1, 2, 3, 4 and 5 MW/m² of incident heat flux
- Predicted TC response was not found in experiments

Experiments showed thermocouple response could be modelled as a semi-infinite solid

- Limited to shots without ablation
- Lower depth reduces stress concentrations in the castellation
- Data for $200 \le \Delta T_{surf} \le 700 \text{ C}$ was acquired with a single castellation/thermocouple
- Embedded TCs were found to have a sensitivity of 14 C per Joule of deposited energy into the castellation

Conclusions

- Target was transiently tested to greater heat fluxes than those required for NSTX-U
- Castellated graphite target design appears temperature limited rather than stress limited
 - Results in ablation of graphite from surface
 - $T_{surf} \sim 1650$ C, but measurement is limited by ex-situ calibration and extrapolation to these surface temperatures
 - No testing of the prototype PFC tiles + mounting assembly has been performed
- Can treat individual castellations as semi-infinite solids on short time scales (< 10 sec)
 - Further, 3D FEA modelling is needed to fully understand this behavior
- Embedded TCs installed in castellations can be used as calorimeters to measure shot-integrated deposited energy

 Sensitivity of 70 J/°C was found

Re-prints

Future Work

- Prototype PFC testing
 - Experimental planning is underway
 - Continued analysis to determine if desired peak heat fluxes can be achieved with a single e-beam
 - Higher temperature IR calibration
 - Review visible imaging for evidence of ablation
- Continued heat transfer analysis
 - Finite Element Analysis of target
- Continued investigation of use of integrated PFC calorimeters for use in real-time protection system

Adapted the controller and software from EB60 system to be able to produce desired profiles

- EB60 system was originally at Sandia NL
- Installation of the controller and software @ ARL was successful
 - Modified in a few days
 - Allowed quick changes in beam positioning, raster pattern
- Allows programming of Diffusive-Gaussian ("Eich") heat flux profiles

Eich Profile Simulation

Example of pre-programmed Diffusive-Gaussian raster pattern

Using Revised NSTX-U Heat Flux Requirements to Determine Testing Needs

- Heat flux requirements were revised for nearly all PFC surfaces
- Defined in terms of peak heat flux, duration and "extent"
 - Done to simplify specifications for modelling
- The most challenging of the requirements will be tested
 - Multitude of use cases are listed in the revised requirements

Tile Design	Heat Flux (MW/m²)	Extent (cm)	Duration (sec)
IBDH	7.0	15	5
OBD1-2	6.0	13	5

