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NSTX studies showed significant amounts of HHFW
power missing from core

* The Interaction between the RF antennas and the scrape of layer (SOL) plasma is
of crucial importance in determining the overall performance of RF in a tokamak
- All frequencies: LH, IC, HHFW, etc ...

* In NSTX

- Strong interactions between HHFW and SOL plasm
[Hosea et. al POP 2008, Phillips et al., 2009, Perkins et. al. PRL 2012]

- Core Heating Effieicny () enhanced in stronger magnetic field
- B, =0.45T (ny=-12) : 1 ~ 44% > Power loss (Py) ~ 56%
- B, =0.55T (n,=-12) :  ~ 65% —> Power loss (P.) ~ 35%

- Larger power losses occur for high density in front of the antenna
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Density where FW cutoff is open is critical

NSTX HHFW
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[Hosea et al, POP 2008]

Nt € Nee (N, : density in front of antenna)
* FW cannot propagate in the SOL

* Higher heating

* |ess power losses

Nant >> Nec
* FW propagate in the SOL

* Lower heating
* higher power losses
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Previous simulations suggest SOL wave excitation

can lead to significant SOL power losses
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Fraction of SOL power losses (P,ps)
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Previous simulations adopted idealized boundary
for simplicity

Rectangle Vacuumvessel T
Wide SOL !
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[Bertelli et al 2014]
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FW2D Model Description



2D Full-wave model (FW2D) has been developed to
investigate SOL physics in realistic boundaries

=  Wave equations : frequency domain
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= Wave solution using finite element method and
unstructured triangle mesh
— Easily adopted to various geometries

(e.g., dipole, tokamak...)
— Easily adopt various boundaries

(e.g., rectangle, vacuum vessel...)
- Fast!

= Successfully examined waves at planetary
magnetospheres

Kim et al., GRL 2015, Kim and Johnson, GRL 2016; Kim et al., EPJ 2017

m : Azimuthal (toroidal) wave number
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dielectric tensor in cold plasma
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FW2D code provide rapid cold plasma wave field

0 c " i . . . .

10 R 0 ¢ TOsimulate wave absorption, collisional
(a) 2 10" i Vi =01 frequency (¥) can be implemented in the

Af\\,\ | u:::)?;/w =0.5 .

g2l G T s o0 =0.01 momentum equation, then
02 04 06 0.8 1 1.2
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« Wave in the plasma core : change with Veope /W
 Wave in the SOL : not affected by v/ /w

e Possible to estimate the SOL power losses by
adopting an arbitrary collisions in the plasma
core

=01 - 15.354+ 0.5 % (almost identical)

for VSOL/CU = 0.01

YA [ = 0.05 — 0.5

core

I @NSTX-U 2018 APS-DPP




FW2D and AORSA simulations show excellent
agreement in SOL field structure

FW2D - COLD approximation
- FAST computation
* AORSA - Plasma kinetic effect

- slow computation

Wave transmission and reflection
coefficients at the LCFS are not the
same = Two wave solutions cannot
be exactly same

(a)

Electric Field (kV/m)
[ ]

* The wave structure shows very good
agreement between FW2D and
AORSA

- FW2D code can be used to
(efficiently) examine waves in the
cold SOL

(b)
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HHFW in various boundaries
: Effects of SOL size variation



HHFW standing mode in the SOL becomes weaker
as SOL size is reduced
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SOL Power losses in the SOL size decreases
as SOL size is reduced
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al. 2014 maximum Py,
e P, tends to be increases as SOL size
steepened near the increases

critical density where
the FW cutoff is open
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HHFW in vacuum vessel boundary



HHFW are examined
by adopting a realistic vacuum vessel boundary
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Narrow FW SOL cavity (among
LCFS, FW cutoff layer and outer

boundary)
- Weaker wave power

Large FW SOL cavity
- FW standing mode
- Large P,
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HHFW gradually propagate into the SOL
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Power losses increases linearly with collision in SOL
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« SOL VSOL/w could be collisional losses but also represent other loss
mechanisms such as convective losses to walls
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Power losses decreases as the SOL size is reduced
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HHFW in various magnetic field strength
plasma



Power losses decreases as B; increases
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* Power losses increases as B, increases = Consistent with experiments [e.g.,
Hosea et al 2008]
* AN, (forlower P,) increases as By increases
- HHFW can propagate to the plasma core in wide range of density in front of
antenna for strong magnetic field case
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SOL power losses (%)
NN

Power losses decreases as B; increases
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Summary

Lower Narrower Stronger
Density in front Distance between Magnetic field
Antenna LCFS and antenna strength
(" )
Reduce
L SOL collisional power losses in the vacuum vessel )
[ 0 0 I . \
Consistent with Experiments
s [e.g., Hosea et al., 2008; Phillips et al., 2009] )
(- Minimum SOL collisional losses occur (all magnetic field strength) h

- near the critical density where FW cutoff is open
* Minimum SOL collisional losses occur (strongly magnetized
_ plamsa) = with wide range of the density in front of antenna D
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Future Work

We will examine the HHFW in the NSTX/NSTX-U using /

recently developed Petra-M code and compare the <

results from FW2D {'

(e.g., BP11.00082 : Shiraiwa et al., Development of 0
Petra-M Framework: toward OS integrated FEM

analysis)

\\\II|
NN

\

\\\\ \\\\\
'\\\\ NSNS II"
M “‘||:TT||:|||,!;!IJ.!.!!.!!!!1L

||\\\\\\

LSS
l[‘iii"mﬁﬁmlulllull!!!!'!!!!ﬁ{{{\\

[\:I MR i

'{{\\\\\\\““‘w i

Fast wave in
Alcartor C-Mod

-~
LH wave ! /
ﬂ launcher Rt

+ Fastwave in LADP



