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High Frequency Alfvén Eigenmodes and
Anomalous Electron Temperature Flattening

• High frequency Alfvén eigenmodes
are often observed in spherical
tokamak experiments

– Low field→ large vbeam/vA

• In NSTX, these modes have been
linked to anomalous Te flattening at
high beam power1

• Understanding stability properties
is required to test theories of
Alfvénic electron energy transport

• New beam sources on NSTX-U
provide new degrees of freedom
for phase-space engineering

1D. Stutman et al. Phys. Rev. Lett. 102, 115002 (2009)
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GAE Suppression on NSTX-U

• NSTX-U found robust suppression
of GAEs with addition of new,
outboard/tangential beams2

• Experimental observations
reproduced by numerical modeling
and supported by analytic theory3

What predictions can
be made about CAE

suppression?

2E. Fredrickson et al. Nucl. Fusion 58, 082022 (2018)
3E. Fredrickson et al. Phys. Rev. Lett. 118, 265001 (2017)
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Sub-cyclotron Alfvén Eigenmodes in NSTX

• High frequency Alfvén eigenmodes
routinely excited in NSTX(-U)
plasmas by neutral beam injection

– Driven by Doppler-shifted
cyclotron resonance with fast ions
ω −

〈
k‖v‖ + k⊥vDr

〉
= ` 〈ωci〉

• Identified as combination of
compressional (CAE) and global
(GAE) Alfvén eigenmodes

– Co-/cntr-propagating |n| ≈ 3− 14
– ω/ωci ≈ 0.1− 0.7 (� ωTAE)
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Hybrid Simulation Method

• Hybrid MHD and Particle code (HYM)4

– Single fluid resistive MHD thermal plasma
– Full orbit kinetic fast ions with δF scheme

• Initial value code in 3D toroidal geometry
• Linear fluid equations and unperturbed particle trajectories

– Optional nonlinear physics (not used for this study)
• Self-consistent equilibrium includes energetic particle effects

via current-coupling

∂2ψ

∂z2
+ R

∂

∂R

(
1
R
∂ψ

∂R

)
= −R2P′ − HH′ −GH′ + RJbφ︸ ︷︷ ︸

self-consistent EP terms

B = ∇φ×∇ψ+h∇φ h(R, z) ≡ H(ψ) +G(R, z) Jb,pol = ∇G×∇φ

−→ pressure anisotropy, increased Shafranov shift, more peaked current

• Non-self-consistent equilibrium allows investigation of fast ion
drive independent of changes to equilibrium

4E. Belova et al. Phys. Plasmas 10, 3240 (2003)
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HYM Physics Model

Fluid thermal plasma

ρ
dV
dt

=−∇P + (J − Jb)× B

− enb(E − ηδJ) + µ∆V

E = −V × B + ηδJ

∂B
∂t

= −∇× E

µ0J = ∇× B

∂ρ

∂t
= −∇ · (ρV )

d
dt

(
P
ργ

)
= 0

Kinetic fast ions

dx
dt

= v

dv
dt

=
qi

mi
(E − ηδJ + v × B)

δF Scheme

F = F0(E , µ, pφ) + δF(t)

w ≡ δF/F

dw
dt

= − (1− w)
d ln F0

dt

• ρ,V ,P are plasma mass density, velocity, and pressure
• nb, Jb are beam ion density and current

– Assuming nb � ne but allowing Jb ≈ J th
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Fast Ion Distribution Model

• Equilibrium dist: F0 =
∑

i AiF1(v ; v0,i)F2(λ;λ0,i)F3(pφ, v)

– Energy E = 1
2 miv2

– Trapping parameter λ = µB0/E ≈ E⊥B0/EB
Passing: 0 < λ < 1− r/R
Trapped: 1− r/R < λ < 1 + r/R

– Canonical angular momentum pφ = −qiψ + miRvφ

F1(v ; v0,i ) =
1

v3 + v3
c

for v < v0,i

F2(λ;λ0,i ) = exp
(
− (λ− λ0,i )

2 /∆λ2
)

F3 (pφ, v) =

(
pφ − pmin

miR0v − qiψ0 − pmin

)α
for pφ > pmin

• NSTX: v0/vA . 5, vc ≈ v0/2, λ0 = 0.7, ∆λ = 0.3, α = 6

• NSTX-U: v0/vA . 2, λ0 = 0 for new beam source
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Theoretical Framework

• Perturbative linear growth rate derived by Gorelenkov in 20035

– δf from integrating gyrokinetic equation along equilibrium orbits
– includes finite Larmor radius (FLR) effects analytically

can be significant in spherical tokamaks

– requires slow resonance: γ � ωb

• Restrict to 2D velocity space: ignore pφ, r dependence
– may be incorporated with ω∗ effect and integration over space

• Goal: simple stability criteria due to fast ion drive without
assumptions about bulk profiles, mode structure, orbits, etc

– upper bound on growth rate, since neglecting bulk damping
primarily: electron Landau and radiative/continuum damping

– including finite ω/ωci < 1 and all k‖/k⊥ terms

5N. Gorelenkov et al. Nucl. Fusion 43, 228 (2003)
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Growth Rate Calculation

γ/ω ∝ − E∗ · =εA
b · E

/
E∗ · ε · E

∝ −
∫

dEdE⊥I2δ(θ − θres)
(
G′` · E

)∗
(G` · E) Π̂fb

Transform to new variables: x = E⊥/E (= 〈ω̄ci〉λ), E‖ = E − E⊥
1. Jacobian. dEdE⊥ = E‖dE‖dx/(1− x)2

2. Resonance. I2
resδ(θ − θres) ∝ δ(E‖ − E res

‖ )/
∣∣k‖∣∣

3. FLR terms. G` = G′` = v⊥ (`J`(z)/z, iJ ′`(z)) , z = k⊥ρ⊥b(
G′` · E

)∗
(G` · E) ≡ |E |2 E⊥J m

` (z)

4. Gradients. Π̂fb =
[
∂
∂E + `

ω̄
∂
∂E⊥

]
fb= 1

E
[
E ∂
∂E +

(
`
ω̄ − λ

)
∂
∂λ

]
fb

5. Resonance condition ω − k‖
〈
v‖,res

〉
= ` 〈ωci〉

allows trivial integration over E‖, leaving

γ

ωci
∝
∫

dx
x

(1− x)2 J m
` (z)

[
E ∂
∂E

+

(
`

ω̄
− λ

)
∂

∂λ

]
fb(E , λ)

∣∣∣∣
E=E res

‖ /(1−x)
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Growth Rate for Beam Distribution

For multi-beam distribution, and letting u ≡ E/E0 = E res
‖ /E0(1− x)

γ

ωci
∝ −

∑
beams

∫ 1−E res
‖ /E0

0
dx

Jacobian︷ ︸︸ ︷
x

(1− x)2

FLR terms︷ ︸︸ ︷
J m

` (z)

fb︷ ︸︸ ︷
e−(x−λ0〈ω̄ci〉)2/∆λ2〈ω̄ci〉2

1 + (4u)3/2︸ ︷︷ ︸
non-negative[

3
2

(
1− 1

1 + (4u)3/2

)
︸ ︷︷ ︸

∂fb/∂E damping
(negligible for ` 6=0)

+
2

∆λ2 〈ω̄ci〉2
(x − λ0 〈ω̄ci〉)

(
`

ω̄
− x

)]
︸ ︷︷ ︸

∂fb/∂λ drive/damping
(has sign of x−λ0〈ω̄ci〉)

If 1− E res
‖ /E0 < λ0 〈ω̄ci〉, then the integrand does not change sign.

Then co-propagating modes (` = 0,−1) will be damped, and
cntr-modes (` = +1) will be driven by the fast ions.
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One and Two Beam Distributions

• Single beam distribution has opposite sign ∂fb/∂λ
for λ < λ0 vs. λ > λ0

– Left: single beam with λ0 = 0.7 and v0/vA = 5.0

• Adding second beam at new λ0 may change sign [∂fb/∂λ]

– Right: λ dependence of distribution resulting from adding a
second beam with λ0 = 0 and 50% of first beam’s density
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Narrow Beam Approximation

For a very narrow beam, growth rate can be integrated by
expanding near x = x0 (= λ0 〈ω̄ci〉)

γ

ωci

∝∼ −
∫ x0+ε

x0−ε

x
(1− x)2

(
`

ω̄
− x

)
J m

` (z)︸ ︷︷ ︸
h(x)≈h(x0)+(x−x0)h′(x0)

(x − x0) e−(x−x0)2/∆x2
dx

= −h′(x0) ∆x2 (−ε exp(−ε2/∆x2) + ∆x
√
πErf(ε/∆x)/2

)︸ ︷︷ ︸
positive

• leads to stability condition on k⊥ρ⊥b only
– similar to conclusions drawn in Gorelenkov 2003 NF

• requires ∆λ . 0.05 for validity
– much narrower than realistic beam distributions (∆λ ≈ 0.3)
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Wide Beam Approximation

• Two assumptions make integration tractable
1. For large ∆λ, approx ∂xe−(x−x0)2/∆x2 ≈ −2(x − x0)/∆x2

Reasonable for x0 −∆x/
√

2 < x < x0 + ∆x/
√

2
2. For ζ . 1, use small argument expansion for J m

` (z)

z = k⊥ρ⊥b =
k⊥v‖,res

ωci

√
x

1−x ≡ ζ
√

x
1−x

For ζ � 1, use asymptotic expansion, but atypical

• Yields sufficient conditions for net drive from anisotropy:
` = 0 co-CAE requires v0 > v‖,res/(1− x0)5/8

` = −1 co-CAE requires v0 > v‖,res/(1− x0)3/4

` = +1 cntr-CAE requires v0 < v‖,res/(1− x0)3/4

• ` = ±1 GAE has same conditions as CAEs
• ∂fb/∂E damping is non-negligible for ` = 0, requiring instead:

v0 > v‖,res/
(

1− x0
2

[
1 +

√
1 + 12∆x2/5x2

0

])5/8

• Typical NSTX(-U) beams have ∆x ≈ 0.3 – sufficiently large
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Growth Rate via Numerical Integration

• Numerically integrate full analytic expression for growth rate
– Depends on beam parameters v0/vA and λ0

– Depends on mode parameters ω/ωci , k‖/k⊥, and `res

• red: net fast ion drive, blue: net fast ion damping,
gray: insufficient beam velocity for resonant interaction

• black curve: approximate boundary derived analytically
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Potential Suppression Techniques

Adding a second beam in the stable region should damp the mode

1. Add a beam in a different geometry
I To suppress cntr-GAEs, add a more tangential beam (low λ0)

explains NSTX-U GAE suppression observations

I To suppress co-CAEs, add a more radial beam (high λ0)
testable in future NSTX-U experiments

− To suppress either, counter-inject a new beam at the same λ0

potential experiments on DIII-D

2. Add a beam with a different injection energy
− To suppress cntr-GAEs, add a beam with a higher voltage

unrealistic due to hardware constraints

− To suppress co-CAEs, add a beam with a lower voltage
possible for limited voltage range

Items marked with I are included in this poster.
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GAE suppression via Tangential Injection

• To stabilize cntr-GAE, add second beam with small λ0 = 0
– Adding second beam with 7% density of original beam reduces
γ/ωci by 50% – adding 13% in new beam reduces by 10x

Simulated mode: n = 8, ω/ωci = 0.2, k‖/k⊥ = 1.5

• Previously shown in experiments and simulations of NSTX-U
– this confirms the phenomena in the NSTX-like model

equilibrium before pursuing the speculative CAE suppression
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GAE suppression via Tangential Injection

• Previous case is for a single mode with fixed ω/ωci and k‖/k⊥
• Theory can estimate second beam power required to

suppress all GAEs excited by a beam with fixed λ0 and v0/vA
– Right figure: gray region indicates mode damped by first beam

or ad-hoc bulk damping rate inferred from simulations
• Suppression may be achieved more efficiently with λ0 small

but nonzero, due to where fast ion damping peaks
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CAE suppression via Radial Injection

• To stabilize co-CAE, add second beam with large λ0 = 1
– Adding second beam with 66% density of original beam

reduces γ/ωci by 50% but does not totally suppress.
Simulated mode: n = 9, ω/ωci = 0.5, k‖/k⊥ = 1.0

• Drive/damping regions of phase space are relative to central
beam pitch – can change sign with new beam
• γ ∼

∑
i

∫
∂fi/∂λdλ ∼

∑
i

∫
(λ− λ0i)fidλ
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CAE suppression via Radial Injection

• Previous case is for a single mode with fixed ω/ωci and k‖/k⊥
• Theory can estimate second beam power required to

suppress all CAEs excited by a beam with fixed λ0 and v0/vA

– Right figure: gray region indicates mode damped by first beam
or ad-hoc bulk damping rate inferred from simulations

• Agrees with simulations indicating CAE damping is less robust
– More effective damping with even larger λ0 ≈ 1.2
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Summary and Conclusions

• A 2D stability theory is developed for CAEs/GAEs driven by
beam-like distributions
• Marginal stability boundaries can be derived in two regimes

– For wide beams (∆λ & 0.2), realistic NSTX(-U) case:
` = 0 co-CAEs require v0 > v‖,res/(1− 〈ω̄ci〉λ0)5/8

` = 1 cntr-GAEs require v0 > v‖,res/(1− 〈ω̄ci〉λ0)3/4

– For narrow beams (∆λ . 0.05), idealized case:
net fast ion drive depends on value of k⊥ρ⊥b

• Hybrid simulations confirm CAE/GAE stabilization via
additional beam injection with specific geometry

– mitigate cntr-GAEs via additional tangential injection
– mitigate co-CAEs via additional radial injection

but less effective than for GAEs
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Future Work

• Simulate CAE suppression in a self-consistent equilibrium
• Model an NSTX-U discharge which observed co-CAEs

– make predictions for CAE suppression in a future experiment

• Further investigate why second beam suppression is less
effective for CAEs than GAEs

• Determine optimal λ0 to add new beam with for a given
marginal stability boundary and mode properties

• Explore CAE suppression via additional beam at lower voltage

• Study potential CAE/GAE suppression with counter-beams
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